Group recommender systems: A multi-agent solution

Autores
Villavicencio, Christian Paulo; Schiaffino, Silvia Noemi; Diaz Pace, Jorge Andres; Monteserin, Ariel José
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Providing recommendations to groups of users has become a promising research area, since many items tend to be consumed by groups of people. Various techniques have been developed aiming at making recommendations to a group as a whole. Most works use aggregation techniques to combine preferences, recommendations or profiles. However, satisfying all group members in an even way still remains as a challenge. To deal with this problem, we propose an extension of a multi-agent approach based on negotiation techniques for group recommendation. In the approach, we use the multilateral Monotonic Concession Protocol (MCP) to combine individual recommendations into a group recommendation. In this work, we extend the MCP protocol to allow users to personalize the behavior of the agents. This extension was evaluated in two different domains (movies and points of interest) with satisfactory results. We compared our approach against different baselines, namely: a preference aggregation algorithm, a recommendation aggregation algorithm, and a simple one-step negotiation. The results show evidence that, when using our negotiation approach, users in the groups are more uniformly satisfied than with traditional aggregation approaches.
Fil: Villavicencio, Christian Paulo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Schiaffino, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Diaz Pace, Jorge Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Monteserin, Ariel José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Materia
GROUP RECOMMENDATIONS
MULTI-AGENT SYSTEMS
NEGOTIATION
RECOMMENDER SYSTEMS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/122865

id CONICETDig_c83971452dceb33a97aaa80833d6a119
oai_identifier_str oai:ri.conicet.gov.ar:11336/122865
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Group recommender systems: A multi-agent solutionVillavicencio, Christian PauloSchiaffino, Silvia NoemiDiaz Pace, Jorge AndresMonteserin, Ariel JoséGROUP RECOMMENDATIONSMULTI-AGENT SYSTEMSNEGOTIATIONRECOMMENDER SYSTEMShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Providing recommendations to groups of users has become a promising research area, since many items tend to be consumed by groups of people. Various techniques have been developed aiming at making recommendations to a group as a whole. Most works use aggregation techniques to combine preferences, recommendations or profiles. However, satisfying all group members in an even way still remains as a challenge. To deal with this problem, we propose an extension of a multi-agent approach based on negotiation techniques for group recommendation. In the approach, we use the multilateral Monotonic Concession Protocol (MCP) to combine individual recommendations into a group recommendation. In this work, we extend the MCP protocol to allow users to personalize the behavior of the agents. This extension was evaluated in two different domains (movies and points of interest) with satisfactory results. We compared our approach against different baselines, namely: a preference aggregation algorithm, a recommendation aggregation algorithm, and a simple one-step negotiation. The results show evidence that, when using our negotiation approach, users in the groups are more uniformly satisfied than with traditional aggregation approaches.Fil: Villavicencio, Christian Paulo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Schiaffino, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Diaz Pace, Jorge Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Monteserin, Ariel José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaElsevier Science2019-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/122865Villavicencio, Christian Paulo; Schiaffino, Silvia Noemi; Diaz Pace, Jorge Andres; Monteserin, Ariel José; Group recommender systems: A multi-agent solution; Elsevier Science; Knowledge-Based Systems; 164; 1-2019; 436-4580950-7051CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0950705118305574info:eu-repo/semantics/altIdentifier/doi/10.1016/j.knosys.2018.11.013info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:49Zoai:ri.conicet.gov.ar:11336/122865instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:49.485CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Group recommender systems: A multi-agent solution
title Group recommender systems: A multi-agent solution
spellingShingle Group recommender systems: A multi-agent solution
Villavicencio, Christian Paulo
GROUP RECOMMENDATIONS
MULTI-AGENT SYSTEMS
NEGOTIATION
RECOMMENDER SYSTEMS
title_short Group recommender systems: A multi-agent solution
title_full Group recommender systems: A multi-agent solution
title_fullStr Group recommender systems: A multi-agent solution
title_full_unstemmed Group recommender systems: A multi-agent solution
title_sort Group recommender systems: A multi-agent solution
dc.creator.none.fl_str_mv Villavicencio, Christian Paulo
Schiaffino, Silvia Noemi
Diaz Pace, Jorge Andres
Monteserin, Ariel José
author Villavicencio, Christian Paulo
author_facet Villavicencio, Christian Paulo
Schiaffino, Silvia Noemi
Diaz Pace, Jorge Andres
Monteserin, Ariel José
author_role author
author2 Schiaffino, Silvia Noemi
Diaz Pace, Jorge Andres
Monteserin, Ariel José
author2_role author
author
author
dc.subject.none.fl_str_mv GROUP RECOMMENDATIONS
MULTI-AGENT SYSTEMS
NEGOTIATION
RECOMMENDER SYSTEMS
topic GROUP RECOMMENDATIONS
MULTI-AGENT SYSTEMS
NEGOTIATION
RECOMMENDER SYSTEMS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Providing recommendations to groups of users has become a promising research area, since many items tend to be consumed by groups of people. Various techniques have been developed aiming at making recommendations to a group as a whole. Most works use aggregation techniques to combine preferences, recommendations or profiles. However, satisfying all group members in an even way still remains as a challenge. To deal with this problem, we propose an extension of a multi-agent approach based on negotiation techniques for group recommendation. In the approach, we use the multilateral Monotonic Concession Protocol (MCP) to combine individual recommendations into a group recommendation. In this work, we extend the MCP protocol to allow users to personalize the behavior of the agents. This extension was evaluated in two different domains (movies and points of interest) with satisfactory results. We compared our approach against different baselines, namely: a preference aggregation algorithm, a recommendation aggregation algorithm, and a simple one-step negotiation. The results show evidence that, when using our negotiation approach, users in the groups are more uniformly satisfied than with traditional aggregation approaches.
Fil: Villavicencio, Christian Paulo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Schiaffino, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Diaz Pace, Jorge Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Monteserin, Ariel José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
description Providing recommendations to groups of users has become a promising research area, since many items tend to be consumed by groups of people. Various techniques have been developed aiming at making recommendations to a group as a whole. Most works use aggregation techniques to combine preferences, recommendations or profiles. However, satisfying all group members in an even way still remains as a challenge. To deal with this problem, we propose an extension of a multi-agent approach based on negotiation techniques for group recommendation. In the approach, we use the multilateral Monotonic Concession Protocol (MCP) to combine individual recommendations into a group recommendation. In this work, we extend the MCP protocol to allow users to personalize the behavior of the agents. This extension was evaluated in two different domains (movies and points of interest) with satisfactory results. We compared our approach against different baselines, namely: a preference aggregation algorithm, a recommendation aggregation algorithm, and a simple one-step negotiation. The results show evidence that, when using our negotiation approach, users in the groups are more uniformly satisfied than with traditional aggregation approaches.
publishDate 2019
dc.date.none.fl_str_mv 2019-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/122865
Villavicencio, Christian Paulo; Schiaffino, Silvia Noemi; Diaz Pace, Jorge Andres; Monteserin, Ariel José; Group recommender systems: A multi-agent solution; Elsevier Science; Knowledge-Based Systems; 164; 1-2019; 436-458
0950-7051
CONICET Digital
CONICET
url http://hdl.handle.net/11336/122865
identifier_str_mv Villavicencio, Christian Paulo; Schiaffino, Silvia Noemi; Diaz Pace, Jorge Andres; Monteserin, Ariel José; Group recommender systems: A multi-agent solution; Elsevier Science; Knowledge-Based Systems; 164; 1-2019; 436-458
0950-7051
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0950705118305574
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.knosys.2018.11.013
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269930064445440
score 13.13397