Argument-based mixed recommenders and their application to movie suggestion
- Autores
- Briguez, Cristian Emanuel; Budan, Maximiliano Celmo David; Deagustini, Cristhian Ariel David; Maguitman, Ana Gabriela; Capobianco, Marcela; Simari, Guillermo Ricardo
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Recommender systems have become prevalent in recent years as they help users to access relevant items from the vast universe of possibilities available these days. Most existing research in this area is based purely on quantitative aspects such as indices of popularity or measures of similarity between items or users. This work introduces a novel perspective on movie recommendation that combines a basic quantitative method with a qualitative approach, resulting in a family of mixed character recommender systems. The proposed framework incorporates the use of arguments in favor or against recommendations to determine if a suggestion should be presented or not to a user. In order to accomplish this, Defeasible Logic Programming (DeLP) is adopted as the underlying formalism to model facts and rules about the recommendation domain and to compute the argumentation process. This approach has a number features that could be proven useful in recommendation settings. In particular, recommendations can account for several different aspects (e.g., the cast, the genre or the rating of a movie), considering them all together through a dialectical analysis. Moreover, the approach can stem for both content-based or collaborative filtering techniques, or mix them in any arbitrary way. Most importantly, explanations supporting each recommendation can be provided in a way that can be easily understood by the user, by means of the computed arguments. In this work the proposed approach is evaluated obtaining very positive results. This suggests a great opportunity to exploit the benefits of transparent explanations and justifications in recommendations, sometimes unrealized by quantitative methods.
Fil: Briguez, Cristian Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina
Fil: Budan, Maximiliano Celmo David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina
Fil: Deagustini, Cristhian Ariel David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina
Fil: Maguitman, Ana Gabriela. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
Fil: Capobianco, Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina
Fil: Simari, Guillermo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina - Materia
-
Defeasible Argumentation
Qualitative Vs Quantitative Recommendations
Recommender Systems - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/77964
Ver los metadatos del registro completo
id |
CONICETDig_84a8095ac8a16c678a05909b49dacf77 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/77964 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Argument-based mixed recommenders and their application to movie suggestionBriguez, Cristian EmanuelBudan, Maximiliano Celmo DavidDeagustini, Cristhian Ariel DavidMaguitman, Ana GabrielaCapobianco, MarcelaSimari, Guillermo RicardoDefeasible ArgumentationQualitative Vs Quantitative RecommendationsRecommender Systemshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Recommender systems have become prevalent in recent years as they help users to access relevant items from the vast universe of possibilities available these days. Most existing research in this area is based purely on quantitative aspects such as indices of popularity or measures of similarity between items or users. This work introduces a novel perspective on movie recommendation that combines a basic quantitative method with a qualitative approach, resulting in a family of mixed character recommender systems. The proposed framework incorporates the use of arguments in favor or against recommendations to determine if a suggestion should be presented or not to a user. In order to accomplish this, Defeasible Logic Programming (DeLP) is adopted as the underlying formalism to model facts and rules about the recommendation domain and to compute the argumentation process. This approach has a number features that could be proven useful in recommendation settings. In particular, recommendations can account for several different aspects (e.g., the cast, the genre or the rating of a movie), considering them all together through a dialectical analysis. Moreover, the approach can stem for both content-based or collaborative filtering techniques, or mix them in any arbitrary way. Most importantly, explanations supporting each recommendation can be provided in a way that can be easily understood by the user, by means of the computed arguments. In this work the proposed approach is evaluated obtaining very positive results. This suggests a great opportunity to exploit the benefits of transparent explanations and justifications in recommendations, sometimes unrealized by quantitative methods.Fil: Briguez, Cristian Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; ArgentinaFil: Budan, Maximiliano Celmo David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; ArgentinaFil: Deagustini, Cristhian Ariel David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; ArgentinaFil: Maguitman, Ana Gabriela. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; ArgentinaFil: Capobianco, Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; ArgentinaFil: Simari, Guillermo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; ArgentinaPergamon-Elsevier Science Ltd2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/77964Briguez, Cristian Emanuel; Budan, Maximiliano Celmo David; Deagustini, Cristhian Ariel David; Maguitman, Ana Gabriela; Capobianco, Marcela; et al.; Argument-based mixed recommenders and their application to movie suggestion; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 41; 14; 10-2014; 6467-64820957-4174CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0957417414001845info:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2014.03.046info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:57:25Zoai:ri.conicet.gov.ar:11336/77964instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:57:25.501CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Argument-based mixed recommenders and their application to movie suggestion |
title |
Argument-based mixed recommenders and their application to movie suggestion |
spellingShingle |
Argument-based mixed recommenders and their application to movie suggestion Briguez, Cristian Emanuel Defeasible Argumentation Qualitative Vs Quantitative Recommendations Recommender Systems |
title_short |
Argument-based mixed recommenders and their application to movie suggestion |
title_full |
Argument-based mixed recommenders and their application to movie suggestion |
title_fullStr |
Argument-based mixed recommenders and their application to movie suggestion |
title_full_unstemmed |
Argument-based mixed recommenders and their application to movie suggestion |
title_sort |
Argument-based mixed recommenders and their application to movie suggestion |
dc.creator.none.fl_str_mv |
Briguez, Cristian Emanuel Budan, Maximiliano Celmo David Deagustini, Cristhian Ariel David Maguitman, Ana Gabriela Capobianco, Marcela Simari, Guillermo Ricardo |
author |
Briguez, Cristian Emanuel |
author_facet |
Briguez, Cristian Emanuel Budan, Maximiliano Celmo David Deagustini, Cristhian Ariel David Maguitman, Ana Gabriela Capobianco, Marcela Simari, Guillermo Ricardo |
author_role |
author |
author2 |
Budan, Maximiliano Celmo David Deagustini, Cristhian Ariel David Maguitman, Ana Gabriela Capobianco, Marcela Simari, Guillermo Ricardo |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Defeasible Argumentation Qualitative Vs Quantitative Recommendations Recommender Systems |
topic |
Defeasible Argumentation Qualitative Vs Quantitative Recommendations Recommender Systems |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Recommender systems have become prevalent in recent years as they help users to access relevant items from the vast universe of possibilities available these days. Most existing research in this area is based purely on quantitative aspects such as indices of popularity or measures of similarity between items or users. This work introduces a novel perspective on movie recommendation that combines a basic quantitative method with a qualitative approach, resulting in a family of mixed character recommender systems. The proposed framework incorporates the use of arguments in favor or against recommendations to determine if a suggestion should be presented or not to a user. In order to accomplish this, Defeasible Logic Programming (DeLP) is adopted as the underlying formalism to model facts and rules about the recommendation domain and to compute the argumentation process. This approach has a number features that could be proven useful in recommendation settings. In particular, recommendations can account for several different aspects (e.g., the cast, the genre or the rating of a movie), considering them all together through a dialectical analysis. Moreover, the approach can stem for both content-based or collaborative filtering techniques, or mix them in any arbitrary way. Most importantly, explanations supporting each recommendation can be provided in a way that can be easily understood by the user, by means of the computed arguments. In this work the proposed approach is evaluated obtaining very positive results. This suggests a great opportunity to exploit the benefits of transparent explanations and justifications in recommendations, sometimes unrealized by quantitative methods. Fil: Briguez, Cristian Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina Fil: Budan, Maximiliano Celmo David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina Fil: Deagustini, Cristhian Ariel David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina Fil: Maguitman, Ana Gabriela. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina Fil: Capobianco, Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina Fil: Simari, Guillermo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina |
description |
Recommender systems have become prevalent in recent years as they help users to access relevant items from the vast universe of possibilities available these days. Most existing research in this area is based purely on quantitative aspects such as indices of popularity or measures of similarity between items or users. This work introduces a novel perspective on movie recommendation that combines a basic quantitative method with a qualitative approach, resulting in a family of mixed character recommender systems. The proposed framework incorporates the use of arguments in favor or against recommendations to determine if a suggestion should be presented or not to a user. In order to accomplish this, Defeasible Logic Programming (DeLP) is adopted as the underlying formalism to model facts and rules about the recommendation domain and to compute the argumentation process. This approach has a number features that could be proven useful in recommendation settings. In particular, recommendations can account for several different aspects (e.g., the cast, the genre or the rating of a movie), considering them all together through a dialectical analysis. Moreover, the approach can stem for both content-based or collaborative filtering techniques, or mix them in any arbitrary way. Most importantly, explanations supporting each recommendation can be provided in a way that can be easily understood by the user, by means of the computed arguments. In this work the proposed approach is evaluated obtaining very positive results. This suggests a great opportunity to exploit the benefits of transparent explanations and justifications in recommendations, sometimes unrealized by quantitative methods. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/77964 Briguez, Cristian Emanuel; Budan, Maximiliano Celmo David; Deagustini, Cristhian Ariel David; Maguitman, Ana Gabriela; Capobianco, Marcela; et al.; Argument-based mixed recommenders and their application to movie suggestion; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 41; 14; 10-2014; 6467-6482 0957-4174 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/77964 |
identifier_str_mv |
Briguez, Cristian Emanuel; Budan, Maximiliano Celmo David; Deagustini, Cristhian Ariel David; Maguitman, Ana Gabriela; Capobianco, Marcela; et al.; Argument-based mixed recommenders and their application to movie suggestion; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 41; 14; 10-2014; 6467-6482 0957-4174 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0957417414001845 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2014.03.046 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269460929445888 |
score |
13.13397 |