Argument-based mixed recommenders and their application to movie suggestion

Autores
Briguez, Cristian Emanuel; Budan, Maximiliano Celmo David; Deagustini, Cristhian Ariel David; Maguitman, Ana Gabriela; Capobianco, Marcela; Simari, Guillermo Ricardo
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Recommender systems have become prevalent in recent years as they help users to access relevant items from the vast universe of possibilities available these days. Most existing research in this area is based purely on quantitative aspects such as indices of popularity or measures of similarity between items or users. This work introduces a novel perspective on movie recommendation that combines a basic quantitative method with a qualitative approach, resulting in a family of mixed character recommender systems. The proposed framework incorporates the use of arguments in favor or against recommendations to determine if a suggestion should be presented or not to a user. In order to accomplish this, Defeasible Logic Programming (DeLP) is adopted as the underlying formalism to model facts and rules about the recommendation domain and to compute the argumentation process. This approach has a number features that could be proven useful in recommendation settings. In particular, recommendations can account for several different aspects (e.g., the cast, the genre or the rating of a movie), considering them all together through a dialectical analysis. Moreover, the approach can stem for both content-based or collaborative filtering techniques, or mix them in any arbitrary way. Most importantly, explanations supporting each recommendation can be provided in a way that can be easily understood by the user, by means of the computed arguments. In this work the proposed approach is evaluated obtaining very positive results. This suggests a great opportunity to exploit the benefits of transparent explanations and justifications in recommendations, sometimes unrealized by quantitative methods.
Fil: Briguez, Cristian Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina
Fil: Budan, Maximiliano Celmo David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina
Fil: Deagustini, Cristhian Ariel David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina
Fil: Maguitman, Ana Gabriela. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
Fil: Capobianco, Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina
Fil: Simari, Guillermo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina
Materia
Defeasible Argumentation
Qualitative Vs Quantitative Recommendations
Recommender Systems
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/77964

id CONICETDig_84a8095ac8a16c678a05909b49dacf77
oai_identifier_str oai:ri.conicet.gov.ar:11336/77964
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Argument-based mixed recommenders and their application to movie suggestionBriguez, Cristian EmanuelBudan, Maximiliano Celmo DavidDeagustini, Cristhian Ariel DavidMaguitman, Ana GabrielaCapobianco, MarcelaSimari, Guillermo RicardoDefeasible ArgumentationQualitative Vs Quantitative RecommendationsRecommender Systemshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Recommender systems have become prevalent in recent years as they help users to access relevant items from the vast universe of possibilities available these days. Most existing research in this area is based purely on quantitative aspects such as indices of popularity or measures of similarity between items or users. This work introduces a novel perspective on movie recommendation that combines a basic quantitative method with a qualitative approach, resulting in a family of mixed character recommender systems. The proposed framework incorporates the use of arguments in favor or against recommendations to determine if a suggestion should be presented or not to a user. In order to accomplish this, Defeasible Logic Programming (DeLP) is adopted as the underlying formalism to model facts and rules about the recommendation domain and to compute the argumentation process. This approach has a number features that could be proven useful in recommendation settings. In particular, recommendations can account for several different aspects (e.g., the cast, the genre or the rating of a movie), considering them all together through a dialectical analysis. Moreover, the approach can stem for both content-based or collaborative filtering techniques, or mix them in any arbitrary way. Most importantly, explanations supporting each recommendation can be provided in a way that can be easily understood by the user, by means of the computed arguments. In this work the proposed approach is evaluated obtaining very positive results. This suggests a great opportunity to exploit the benefits of transparent explanations and justifications in recommendations, sometimes unrealized by quantitative methods.Fil: Briguez, Cristian Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; ArgentinaFil: Budan, Maximiliano Celmo David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; ArgentinaFil: Deagustini, Cristhian Ariel David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; ArgentinaFil: Maguitman, Ana Gabriela. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; ArgentinaFil: Capobianco, Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; ArgentinaFil: Simari, Guillermo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; ArgentinaPergamon-Elsevier Science Ltd2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/77964Briguez, Cristian Emanuel; Budan, Maximiliano Celmo David; Deagustini, Cristhian Ariel David; Maguitman, Ana Gabriela; Capobianco, Marcela; et al.; Argument-based mixed recommenders and their application to movie suggestion; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 41; 14; 10-2014; 6467-64820957-4174CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0957417414001845info:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2014.03.046info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:57:25Zoai:ri.conicet.gov.ar:11336/77964instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:57:25.501CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Argument-based mixed recommenders and their application to movie suggestion
title Argument-based mixed recommenders and their application to movie suggestion
spellingShingle Argument-based mixed recommenders and their application to movie suggestion
Briguez, Cristian Emanuel
Defeasible Argumentation
Qualitative Vs Quantitative Recommendations
Recommender Systems
title_short Argument-based mixed recommenders and their application to movie suggestion
title_full Argument-based mixed recommenders and their application to movie suggestion
title_fullStr Argument-based mixed recommenders and their application to movie suggestion
title_full_unstemmed Argument-based mixed recommenders and their application to movie suggestion
title_sort Argument-based mixed recommenders and their application to movie suggestion
dc.creator.none.fl_str_mv Briguez, Cristian Emanuel
Budan, Maximiliano Celmo David
Deagustini, Cristhian Ariel David
Maguitman, Ana Gabriela
Capobianco, Marcela
Simari, Guillermo Ricardo
author Briguez, Cristian Emanuel
author_facet Briguez, Cristian Emanuel
Budan, Maximiliano Celmo David
Deagustini, Cristhian Ariel David
Maguitman, Ana Gabriela
Capobianco, Marcela
Simari, Guillermo Ricardo
author_role author
author2 Budan, Maximiliano Celmo David
Deagustini, Cristhian Ariel David
Maguitman, Ana Gabriela
Capobianco, Marcela
Simari, Guillermo Ricardo
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Defeasible Argumentation
Qualitative Vs Quantitative Recommendations
Recommender Systems
topic Defeasible Argumentation
Qualitative Vs Quantitative Recommendations
Recommender Systems
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Recommender systems have become prevalent in recent years as they help users to access relevant items from the vast universe of possibilities available these days. Most existing research in this area is based purely on quantitative aspects such as indices of popularity or measures of similarity between items or users. This work introduces a novel perspective on movie recommendation that combines a basic quantitative method with a qualitative approach, resulting in a family of mixed character recommender systems. The proposed framework incorporates the use of arguments in favor or against recommendations to determine if a suggestion should be presented or not to a user. In order to accomplish this, Defeasible Logic Programming (DeLP) is adopted as the underlying formalism to model facts and rules about the recommendation domain and to compute the argumentation process. This approach has a number features that could be proven useful in recommendation settings. In particular, recommendations can account for several different aspects (e.g., the cast, the genre or the rating of a movie), considering them all together through a dialectical analysis. Moreover, the approach can stem for both content-based or collaborative filtering techniques, or mix them in any arbitrary way. Most importantly, explanations supporting each recommendation can be provided in a way that can be easily understood by the user, by means of the computed arguments. In this work the proposed approach is evaluated obtaining very positive results. This suggests a great opportunity to exploit the benefits of transparent explanations and justifications in recommendations, sometimes unrealized by quantitative methods.
Fil: Briguez, Cristian Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina
Fil: Budan, Maximiliano Celmo David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina
Fil: Deagustini, Cristhian Ariel David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina
Fil: Maguitman, Ana Gabriela. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
Fil: Capobianco, Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina
Fil: Simari, Guillermo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina
description Recommender systems have become prevalent in recent years as they help users to access relevant items from the vast universe of possibilities available these days. Most existing research in this area is based purely on quantitative aspects such as indices of popularity or measures of similarity between items or users. This work introduces a novel perspective on movie recommendation that combines a basic quantitative method with a qualitative approach, resulting in a family of mixed character recommender systems. The proposed framework incorporates the use of arguments in favor or against recommendations to determine if a suggestion should be presented or not to a user. In order to accomplish this, Defeasible Logic Programming (DeLP) is adopted as the underlying formalism to model facts and rules about the recommendation domain and to compute the argumentation process. This approach has a number features that could be proven useful in recommendation settings. In particular, recommendations can account for several different aspects (e.g., the cast, the genre or the rating of a movie), considering them all together through a dialectical analysis. Moreover, the approach can stem for both content-based or collaborative filtering techniques, or mix them in any arbitrary way. Most importantly, explanations supporting each recommendation can be provided in a way that can be easily understood by the user, by means of the computed arguments. In this work the proposed approach is evaluated obtaining very positive results. This suggests a great opportunity to exploit the benefits of transparent explanations and justifications in recommendations, sometimes unrealized by quantitative methods.
publishDate 2014
dc.date.none.fl_str_mv 2014-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/77964
Briguez, Cristian Emanuel; Budan, Maximiliano Celmo David; Deagustini, Cristhian Ariel David; Maguitman, Ana Gabriela; Capobianco, Marcela; et al.; Argument-based mixed recommenders and their application to movie suggestion; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 41; 14; 10-2014; 6467-6482
0957-4174
CONICET Digital
CONICET
url http://hdl.handle.net/11336/77964
identifier_str_mv Briguez, Cristian Emanuel; Budan, Maximiliano Celmo David; Deagustini, Cristhian Ariel David; Maguitman, Ana Gabriela; Capobianco, Marcela; et al.; Argument-based mixed recommenders and their application to movie suggestion; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 41; 14; 10-2014; 6467-6482
0957-4174
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0957417414001845
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2014.03.046
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269460929445888
score 13.13397