On minimal faithful representations of a class of nilpotent lie algebras
- Autores
- Alvarez, María Alejandra; Rojas, Nadina Elizabeth
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work we consider 2-step nilradicals of parabolic subalgebras of the simple Lie algebra An and describe a new family of faithful nil-representations of the nilradicals na,c, a, c ∈ N. We obtain a sharp upper bound for the minimal dimension µ(na,c ) and for several pairs (a, c) we obtain µ(na,c ).
Fil: Alvarez, María Alejandra. Universidad de Antofagasta; Chile
Fil: Rojas, Nadina Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba; Argentina - Materia
-
MINIMAL FAITHFUL REPRESENTATION
NILPOTENT LIE ALGEBRAS
NILRADICALS
NILREPRESENTATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/172731
Ver los metadatos del registro completo
id |
CONICETDig_07d2ff58b394a08205d87ae43b78571f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/172731 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On minimal faithful representations of a class of nilpotent lie algebrasAlvarez, María AlejandraRojas, Nadina ElizabethMINIMAL FAITHFUL REPRESENTATIONNILPOTENT LIE ALGEBRASNILRADICALSNILREPRESENTATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this work we consider 2-step nilradicals of parabolic subalgebras of the simple Lie algebra An and describe a new family of faithful nil-representations of the nilradicals na,c, a, c ∈ N. We obtain a sharp upper bound for the minimal dimension µ(na,c ) and for several pairs (a, c) we obtain µ(na,c ).Fil: Alvarez, María Alejandra. Universidad de Antofagasta; ChileFil: Rojas, Nadina Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba; ArgentinaUniv Nis2021-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/172731Alvarez, María Alejandra; Rojas, Nadina Elizabeth; On minimal faithful representations of a class of nilpotent lie algebras; Univ Nis; Filomat; 35; 5; 11-2021; 1671-16860354-51802406-0933CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.2298/FIL2105671Ainfo:eu-repo/semantics/altIdentifier/url/http://www.doiserbia.nb.rs/Article.aspx?ID=0354-51802105671A#.Y0bQxnZBwdUinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:37Zoai:ri.conicet.gov.ar:11336/172731instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:37.475CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On minimal faithful representations of a class of nilpotent lie algebras |
title |
On minimal faithful representations of a class of nilpotent lie algebras |
spellingShingle |
On minimal faithful representations of a class of nilpotent lie algebras Alvarez, María Alejandra MINIMAL FAITHFUL REPRESENTATION NILPOTENT LIE ALGEBRAS NILRADICALS NILREPRESENTATION |
title_short |
On minimal faithful representations of a class of nilpotent lie algebras |
title_full |
On minimal faithful representations of a class of nilpotent lie algebras |
title_fullStr |
On minimal faithful representations of a class of nilpotent lie algebras |
title_full_unstemmed |
On minimal faithful representations of a class of nilpotent lie algebras |
title_sort |
On minimal faithful representations of a class of nilpotent lie algebras |
dc.creator.none.fl_str_mv |
Alvarez, María Alejandra Rojas, Nadina Elizabeth |
author |
Alvarez, María Alejandra |
author_facet |
Alvarez, María Alejandra Rojas, Nadina Elizabeth |
author_role |
author |
author2 |
Rojas, Nadina Elizabeth |
author2_role |
author |
dc.subject.none.fl_str_mv |
MINIMAL FAITHFUL REPRESENTATION NILPOTENT LIE ALGEBRAS NILRADICALS NILREPRESENTATION |
topic |
MINIMAL FAITHFUL REPRESENTATION NILPOTENT LIE ALGEBRAS NILRADICALS NILREPRESENTATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this work we consider 2-step nilradicals of parabolic subalgebras of the simple Lie algebra An and describe a new family of faithful nil-representations of the nilradicals na,c, a, c ∈ N. We obtain a sharp upper bound for the minimal dimension µ(na,c ) and for several pairs (a, c) we obtain µ(na,c ). Fil: Alvarez, María Alejandra. Universidad de Antofagasta; Chile Fil: Rojas, Nadina Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba; Argentina |
description |
In this work we consider 2-step nilradicals of parabolic subalgebras of the simple Lie algebra An and describe a new family of faithful nil-representations of the nilradicals na,c, a, c ∈ N. We obtain a sharp upper bound for the minimal dimension µ(na,c ) and for several pairs (a, c) we obtain µ(na,c ). |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/172731 Alvarez, María Alejandra; Rojas, Nadina Elizabeth; On minimal faithful representations of a class of nilpotent lie algebras; Univ Nis; Filomat; 35; 5; 11-2021; 1671-1686 0354-5180 2406-0933 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/172731 |
identifier_str_mv |
Alvarez, María Alejandra; Rojas, Nadina Elizabeth; On minimal faithful representations of a class of nilpotent lie algebras; Univ Nis; Filomat; 35; 5; 11-2021; 1671-1686 0354-5180 2406-0933 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.2298/FIL2105671A info:eu-repo/semantics/altIdentifier/url/http://www.doiserbia.nb.rs/Article.aspx?ID=0354-51802105671A#.Y0bQxnZBwdU |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Univ Nis |
publisher.none.fl_str_mv |
Univ Nis |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269966969077760 |
score |
13.13397 |