Isomorphism conjectures with proper coefficients

Autores
Cortiñas, Guillermo Horacio; Ellis, Eugenia
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let G be a group and F a nonempty family of subgroups of G, closed under conjugation and under subgroups. Also let E be a functor from small Z-linear categories to spectra, and let A be a ring with a G-action. Under mild conditions on E and A one can define an equivariant homology theory HG(−,E(A)) of G-simplicial sets such that H⁎G(G/H,E(A))=E(A⋊H). The strong isomorphism conjecture for the quadruple (G,F,E,A) asserts that if X→Y is an equivariant map such that XH→YH is an equivalence for all H∈F, then HG(X,E(A))→HG(Y,E(A)) is an equivalence. In this paper we introduce an algebraic notion of (G,F)-properness for G-rings, modeled on the analogous notion for G-C-algebras, and show that the strong (G,F,E,P) isomorphism conjecture for (G,F)-proper P is true in several cases of interest in the algebraic K-theory context.
Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
Fil: Ellis, Eugenia. Universidad de la República; Uruguay
Materia
Farrell-Jones Conjecture
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/18780

id CONICETDig_b2264f8017867b34cc543271b702de50
oai_identifier_str oai:ri.conicet.gov.ar:11336/18780
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Isomorphism conjectures with proper coefficientsCortiñas, Guillermo HoracioEllis, EugeniaFarrell-Jones Conjecturehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let G be a group and F a nonempty family of subgroups of G, closed under conjugation and under subgroups. Also let E be a functor from small Z-linear categories to spectra, and let A be a ring with a G-action. Under mild conditions on E and A one can define an equivariant homology theory HG(−,E(A)) of G-simplicial sets such that H⁎G(G/H,E(A))=E(A⋊H). The strong isomorphism conjecture for the quadruple (G,F,E,A) asserts that if X→Y is an equivariant map such that XH→YH is an equivalence for all H∈F, then HG(X,E(A))→HG(Y,E(A)) is an equivalence. In this paper we introduce an algebraic notion of (G,F)-properness for G-rings, modeled on the analogous notion for G-C-algebras, and show that the strong (G,F,E,P) isomorphism conjecture for (G,F)-proper P is true in several cases of interest in the algebraic K-theory context.Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; ArgentinaFil: Ellis, Eugenia. Universidad de la República; UruguayElsevier Science2014-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18780Cortiñas, Guillermo Horacio; Ellis, Eugenia; Isomorphism conjectures with proper coefficients; Elsevier Science; Journal Of Pure And Applied Algebra; 218; 7; 7-2014; 1224-12630022-4049CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jpaa.2013.11.016info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S002240491300220Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:03:34Zoai:ri.conicet.gov.ar:11336/18780instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:03:35.173CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Isomorphism conjectures with proper coefficients
title Isomorphism conjectures with proper coefficients
spellingShingle Isomorphism conjectures with proper coefficients
Cortiñas, Guillermo Horacio
Farrell-Jones Conjecture
title_short Isomorphism conjectures with proper coefficients
title_full Isomorphism conjectures with proper coefficients
title_fullStr Isomorphism conjectures with proper coefficients
title_full_unstemmed Isomorphism conjectures with proper coefficients
title_sort Isomorphism conjectures with proper coefficients
dc.creator.none.fl_str_mv Cortiñas, Guillermo Horacio
Ellis, Eugenia
author Cortiñas, Guillermo Horacio
author_facet Cortiñas, Guillermo Horacio
Ellis, Eugenia
author_role author
author2 Ellis, Eugenia
author2_role author
dc.subject.none.fl_str_mv Farrell-Jones Conjecture
topic Farrell-Jones Conjecture
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let G be a group and F a nonempty family of subgroups of G, closed under conjugation and under subgroups. Also let E be a functor from small Z-linear categories to spectra, and let A be a ring with a G-action. Under mild conditions on E and A one can define an equivariant homology theory HG(−,E(A)) of G-simplicial sets such that H⁎G(G/H,E(A))=E(A⋊H). The strong isomorphism conjecture for the quadruple (G,F,E,A) asserts that if X→Y is an equivariant map such that XH→YH is an equivalence for all H∈F, then HG(X,E(A))→HG(Y,E(A)) is an equivalence. In this paper we introduce an algebraic notion of (G,F)-properness for G-rings, modeled on the analogous notion for G-C-algebras, and show that the strong (G,F,E,P) isomorphism conjecture for (G,F)-proper P is true in several cases of interest in the algebraic K-theory context.
Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
Fil: Ellis, Eugenia. Universidad de la República; Uruguay
description Let G be a group and F a nonempty family of subgroups of G, closed under conjugation and under subgroups. Also let E be a functor from small Z-linear categories to spectra, and let A be a ring with a G-action. Under mild conditions on E and A one can define an equivariant homology theory HG(−,E(A)) of G-simplicial sets such that H⁎G(G/H,E(A))=E(A⋊H). The strong isomorphism conjecture for the quadruple (G,F,E,A) asserts that if X→Y is an equivariant map such that XH→YH is an equivalence for all H∈F, then HG(X,E(A))→HG(Y,E(A)) is an equivalence. In this paper we introduce an algebraic notion of (G,F)-properness for G-rings, modeled on the analogous notion for G-C-algebras, and show that the strong (G,F,E,P) isomorphism conjecture for (G,F)-proper P is true in several cases of interest in the algebraic K-theory context.
publishDate 2014
dc.date.none.fl_str_mv 2014-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/18780
Cortiñas, Guillermo Horacio; Ellis, Eugenia; Isomorphism conjectures with proper coefficients; Elsevier Science; Journal Of Pure And Applied Algebra; 218; 7; 7-2014; 1224-1263
0022-4049
CONICET Digital
CONICET
url http://hdl.handle.net/11336/18780
identifier_str_mv Cortiñas, Guillermo Horacio; Ellis, Eugenia; Isomorphism conjectures with proper coefficients; Elsevier Science; Journal Of Pure And Applied Algebra; 218; 7; 7-2014; 1224-1263
0022-4049
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jpaa.2013.11.016
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S002240491300220X
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269808284925952
score 13.13397