Stability results for the N-dimensional Schiffer conjecture via a perturbation method
- Autores
- Canuto, Bruno
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given a eigenvalue µ 2 0m of −∆ in the unit ball B1, with Neumann boundary conditions, we prove that there exists a class D of C 0,1 -domains, depending on µ0m, such that if u is a no trivial solution to the following problem ∆u + µu = 0 in Ω, u = 0 on ∂Ω, and R ∂Ω ∂nu = 0, with Ω ∈ D, and µ = µ 2 0m + o(1), then Ω is a ball. Here µ is a eigenvalue of −∆ in Ω, with Neumann boundary conditions.
Fil: Canuto, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina - Materia
- Schiffer Conjecture
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18746
Ver los metadatos del registro completo
id |
CONICETDig_ce399b589c73e26a5040566c4ae04aff |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18746 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Stability results for the N-dimensional Schiffer conjecture via a perturbation methodCanuto, BrunoSchiffer Conjecturehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given a eigenvalue µ 2 0m of −∆ in the unit ball B1, with Neumann boundary conditions, we prove that there exists a class D of C 0,1 -domains, depending on µ0m, such that if u is a no trivial solution to the following problem ∆u + µu = 0 in Ω, u = 0 on ∂Ω, and R ∂Ω ∂nu = 0, with Ω ∈ D, and µ = µ 2 0m + o(1), then Ω is a ball. Here µ is a eigenvalue of −∆ in Ω, with Neumann boundary conditions.Fil: Canuto, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; ArgentinaSpringer2014-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18746Canuto, Bruno; Stability results for the N-dimensional Schiffer conjecture via a perturbation method; Springer; Calculus Of Variations And Partial Differential Equations; 50; 1-2; 5-2014; 305-3340944-26691432-0835CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00526-013-0637-1info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00526-013-0637-1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:33Zoai:ri.conicet.gov.ar:11336/18746instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:34.162CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Stability results for the N-dimensional Schiffer conjecture via a perturbation method |
title |
Stability results for the N-dimensional Schiffer conjecture via a perturbation method |
spellingShingle |
Stability results for the N-dimensional Schiffer conjecture via a perturbation method Canuto, Bruno Schiffer Conjecture |
title_short |
Stability results for the N-dimensional Schiffer conjecture via a perturbation method |
title_full |
Stability results for the N-dimensional Schiffer conjecture via a perturbation method |
title_fullStr |
Stability results for the N-dimensional Schiffer conjecture via a perturbation method |
title_full_unstemmed |
Stability results for the N-dimensional Schiffer conjecture via a perturbation method |
title_sort |
Stability results for the N-dimensional Schiffer conjecture via a perturbation method |
dc.creator.none.fl_str_mv |
Canuto, Bruno |
author |
Canuto, Bruno |
author_facet |
Canuto, Bruno |
author_role |
author |
dc.subject.none.fl_str_mv |
Schiffer Conjecture |
topic |
Schiffer Conjecture |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Given a eigenvalue µ 2 0m of −∆ in the unit ball B1, with Neumann boundary conditions, we prove that there exists a class D of C 0,1 -domains, depending on µ0m, such that if u is a no trivial solution to the following problem ∆u + µu = 0 in Ω, u = 0 on ∂Ω, and R ∂Ω ∂nu = 0, with Ω ∈ D, and µ = µ 2 0m + o(1), then Ω is a ball. Here µ is a eigenvalue of −∆ in Ω, with Neumann boundary conditions. Fil: Canuto, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina |
description |
Given a eigenvalue µ 2 0m of −∆ in the unit ball B1, with Neumann boundary conditions, we prove that there exists a class D of C 0,1 -domains, depending on µ0m, such that if u is a no trivial solution to the following problem ∆u + µu = 0 in Ω, u = 0 on ∂Ω, and R ∂Ω ∂nu = 0, with Ω ∈ D, and µ = µ 2 0m + o(1), then Ω is a ball. Here µ is a eigenvalue of −∆ in Ω, with Neumann boundary conditions. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18746 Canuto, Bruno; Stability results for the N-dimensional Schiffer conjecture via a perturbation method; Springer; Calculus Of Variations And Partial Differential Equations; 50; 1-2; 5-2014; 305-334 0944-2669 1432-0835 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18746 |
identifier_str_mv |
Canuto, Bruno; Stability results for the N-dimensional Schiffer conjecture via a perturbation method; Springer; Calculus Of Variations And Partial Differential Equations; 50; 1-2; 5-2014; 305-334 0944-2669 1432-0835 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00526-013-0637-1 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00526-013-0637-1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269352790851584 |
score |
13.13397 |