Stability results for the N-dimensional Schiffer conjecture via a perturbation method

Autores
Canuto, Bruno
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Given a eigenvalue µ 2 0m of −∆ in the unit ball B1, with Neumann boundary conditions, we prove that there exists a class D of C 0,1 -domains, depending on µ0m, such that if u is a no trivial solution to the following problem ∆u + µu = 0 in Ω, u = 0 on ∂Ω, and R ∂Ω ∂nu = 0, with Ω ∈ D, and µ = µ 2 0m + o(1), then Ω is a ball. Here µ is a eigenvalue of −∆ in Ω, with Neumann boundary conditions.
Fil: Canuto, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
Materia
Schiffer Conjecture
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/18746

id CONICETDig_ce399b589c73e26a5040566c4ae04aff
oai_identifier_str oai:ri.conicet.gov.ar:11336/18746
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Stability results for the N-dimensional Schiffer conjecture via a perturbation methodCanuto, BrunoSchiffer Conjecturehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given a eigenvalue µ 2 0m of −∆ in the unit ball B1, with Neumann boundary conditions, we prove that there exists a class D of C 0,1 -domains, depending on µ0m, such that if u is a no trivial solution to the following problem ∆u + µu = 0 in Ω, u = 0 on ∂Ω, and R ∂Ω ∂nu = 0, with Ω ∈ D, and µ = µ 2 0m + o(1), then Ω is a ball. Here µ is a eigenvalue of −∆ in Ω, with Neumann boundary conditions.Fil: Canuto, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; ArgentinaSpringer2014-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18746Canuto, Bruno; Stability results for the N-dimensional Schiffer conjecture via a perturbation method; Springer; Calculus Of Variations And Partial Differential Equations; 50; 1-2; 5-2014; 305-3340944-26691432-0835CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00526-013-0637-1info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00526-013-0637-1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:33Zoai:ri.conicet.gov.ar:11336/18746instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:34.162CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Stability results for the N-dimensional Schiffer conjecture via a perturbation method
title Stability results for the N-dimensional Schiffer conjecture via a perturbation method
spellingShingle Stability results for the N-dimensional Schiffer conjecture via a perturbation method
Canuto, Bruno
Schiffer Conjecture
title_short Stability results for the N-dimensional Schiffer conjecture via a perturbation method
title_full Stability results for the N-dimensional Schiffer conjecture via a perturbation method
title_fullStr Stability results for the N-dimensional Schiffer conjecture via a perturbation method
title_full_unstemmed Stability results for the N-dimensional Schiffer conjecture via a perturbation method
title_sort Stability results for the N-dimensional Schiffer conjecture via a perturbation method
dc.creator.none.fl_str_mv Canuto, Bruno
author Canuto, Bruno
author_facet Canuto, Bruno
author_role author
dc.subject.none.fl_str_mv Schiffer Conjecture
topic Schiffer Conjecture
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Given a eigenvalue µ 2 0m of −∆ in the unit ball B1, with Neumann boundary conditions, we prove that there exists a class D of C 0,1 -domains, depending on µ0m, such that if u is a no trivial solution to the following problem ∆u + µu = 0 in Ω, u = 0 on ∂Ω, and R ∂Ω ∂nu = 0, with Ω ∈ D, and µ = µ 2 0m + o(1), then Ω is a ball. Here µ is a eigenvalue of −∆ in Ω, with Neumann boundary conditions.
Fil: Canuto, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
description Given a eigenvalue µ 2 0m of −∆ in the unit ball B1, with Neumann boundary conditions, we prove that there exists a class D of C 0,1 -domains, depending on µ0m, such that if u is a no trivial solution to the following problem ∆u + µu = 0 in Ω, u = 0 on ∂Ω, and R ∂Ω ∂nu = 0, with Ω ∈ D, and µ = µ 2 0m + o(1), then Ω is a ball. Here µ is a eigenvalue of −∆ in Ω, with Neumann boundary conditions.
publishDate 2014
dc.date.none.fl_str_mv 2014-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/18746
Canuto, Bruno; Stability results for the N-dimensional Schiffer conjecture via a perturbation method; Springer; Calculus Of Variations And Partial Differential Equations; 50; 1-2; 5-2014; 305-334
0944-2669
1432-0835
CONICET Digital
CONICET
url http://hdl.handle.net/11336/18746
identifier_str_mv Canuto, Bruno; Stability results for the N-dimensional Schiffer conjecture via a perturbation method; Springer; Calculus Of Variations And Partial Differential Equations; 50; 1-2; 5-2014; 305-334
0944-2669
1432-0835
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s00526-013-0637-1
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00526-013-0637-1
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269352790851584
score 13.13397