Compact operators and algebraic K -theory for groups which act properly and isometrically on Hilbert space
- Autores
- Cortiñas, Guillermo Horacio; Tartaglia, Gisela
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We prove the K-theoretic Farrell-Jones conjecture for groups with the Haagerup approximation property and coefficient rings and C ∗ C^{∗} -algebras which are stable with respect to compact operators. We use this and Higson-Kasparov's result that the Baum-Connes conjecture holds for such a group G, to show that the algebraic and the C ∗ C^{∗} -crossed product of G with a stable separable G- C ∗ C^{∗} -algebra have the same K-theory.
Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Tartaglia, Gisela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
Algebraic K-theory
Stable C*-algebras
Farrell-Jones conjecture
Haagerup groups - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/88996
Ver los metadatos del registro completo
id |
CONICETDig_eca8f9669250b96a15900cd844b54838 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/88996 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Compact operators and algebraic K -theory for groups which act properly and isometrically on Hilbert spaceCortiñas, Guillermo HoracioTartaglia, GiselaAlgebraic K-theoryStable C*-algebrasFarrell-Jones conjectureHaagerup groupshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove the K-theoretic Farrell-Jones conjecture for groups with the Haagerup approximation property and coefficient rings and C ∗ C^{∗} -algebras which are stable with respect to compact operators. We use this and Higson-Kasparov's result that the Baum-Connes conjecture holds for such a group G, to show that the algebraic and the C ∗ C^{∗} -crossed product of G with a stable separable G- C ∗ C^{∗} -algebra have the same K-theory.Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Tartaglia, Gisela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaDe Gruyter2018-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88996Cortiñas, Guillermo Horacio; Tartaglia, Gisela; Compact operators and algebraic K -theory for groups which act properly and isometrically on Hilbert space; De Gruyter; Journal Fur Die Reine Und Angewandte Mathematik; 2018; 734; 1-2018; 265-2920075-4102CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/crelle.2018.2018.issue-734/crelle-2014-0154/crelle-2014-0154.xmlinfo:eu-repo/semantics/altIdentifier/doi/10.1515/crelle-2014-0154info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:01:58Zoai:ri.conicet.gov.ar:11336/88996instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:01:59.19CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Compact operators and algebraic K -theory for groups which act properly and isometrically on Hilbert space |
title |
Compact operators and algebraic K -theory for groups which act properly and isometrically on Hilbert space |
spellingShingle |
Compact operators and algebraic K -theory for groups which act properly and isometrically on Hilbert space Cortiñas, Guillermo Horacio Algebraic K-theory Stable C*-algebras Farrell-Jones conjecture Haagerup groups |
title_short |
Compact operators and algebraic K -theory for groups which act properly and isometrically on Hilbert space |
title_full |
Compact operators and algebraic K -theory for groups which act properly and isometrically on Hilbert space |
title_fullStr |
Compact operators and algebraic K -theory for groups which act properly and isometrically on Hilbert space |
title_full_unstemmed |
Compact operators and algebraic K -theory for groups which act properly and isometrically on Hilbert space |
title_sort |
Compact operators and algebraic K -theory for groups which act properly and isometrically on Hilbert space |
dc.creator.none.fl_str_mv |
Cortiñas, Guillermo Horacio Tartaglia, Gisela |
author |
Cortiñas, Guillermo Horacio |
author_facet |
Cortiñas, Guillermo Horacio Tartaglia, Gisela |
author_role |
author |
author2 |
Tartaglia, Gisela |
author2_role |
author |
dc.subject.none.fl_str_mv |
Algebraic K-theory Stable C*-algebras Farrell-Jones conjecture Haagerup groups |
topic |
Algebraic K-theory Stable C*-algebras Farrell-Jones conjecture Haagerup groups |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We prove the K-theoretic Farrell-Jones conjecture for groups with the Haagerup approximation property and coefficient rings and C ∗ C^{∗} -algebras which are stable with respect to compact operators. We use this and Higson-Kasparov's result that the Baum-Connes conjecture holds for such a group G, to show that the algebraic and the C ∗ C^{∗} -crossed product of G with a stable separable G- C ∗ C^{∗} -algebra have the same K-theory. Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Tartaglia, Gisela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
We prove the K-theoretic Farrell-Jones conjecture for groups with the Haagerup approximation property and coefficient rings and C ∗ C^{∗} -algebras which are stable with respect to compact operators. We use this and Higson-Kasparov's result that the Baum-Connes conjecture holds for such a group G, to show that the algebraic and the C ∗ C^{∗} -crossed product of G with a stable separable G- C ∗ C^{∗} -algebra have the same K-theory. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/88996 Cortiñas, Guillermo Horacio; Tartaglia, Gisela; Compact operators and algebraic K -theory for groups which act properly and isometrically on Hilbert space; De Gruyter; Journal Fur Die Reine Und Angewandte Mathematik; 2018; 734; 1-2018; 265-292 0075-4102 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/88996 |
identifier_str_mv |
Cortiñas, Guillermo Horacio; Tartaglia, Gisela; Compact operators and algebraic K -theory for groups which act properly and isometrically on Hilbert space; De Gruyter; Journal Fur Die Reine Und Angewandte Mathematik; 2018; 734; 1-2018; 265-292 0075-4102 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/crelle.2018.2018.issue-734/crelle-2014-0154/crelle-2014-0154.xml info:eu-repo/semantics/altIdentifier/doi/10.1515/crelle-2014-0154 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
De Gruyter |
publisher.none.fl_str_mv |
De Gruyter |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269728688570368 |
score |
13.13397 |