The Dixmier Conjecture and the shape of possible counterexamples

Autores
Guccione, J.A.; Guccione, J.J.; Valqui, C.
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We establish a lower bound for the size of possible counterexamples of the Dixmier Conjecture. We prove that B>. 15, where B is the minimum of the greatest common divisor of the total degrees of P and Q, where (P, Q) runs over the counterexamples of the Dixmier Conjecture. © 2013 Elsevier Inc.
Fil:Guccione, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Guccione, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Algebra 2014;399:581-633
Materia
Dixmier Conjecture
Weyl algebra
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_00218693_v399_n_p581_Guccione

id BDUBAFCEN_8e55bf9be7fcda2fa2343c759c71d7c0
oai_identifier_str paperaa:paper_00218693_v399_n_p581_Guccione
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling The Dixmier Conjecture and the shape of possible counterexamplesGuccione, J.A.Guccione, J.J.Valqui, C.Dixmier ConjectureWeyl algebraWe establish a lower bound for the size of possible counterexamples of the Dixmier Conjecture. We prove that B>. 15, where B is the minimum of the greatest common divisor of the total degrees of P and Q, where (P, Q) runs over the counterexamples of the Dixmier Conjecture. © 2013 Elsevier Inc.Fil:Guccione, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Guccione, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2014info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00218693_v399_n_p581_GuccioneJ. Algebra 2014;399:581-633reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:38Zpaperaa:paper_00218693_v399_n_p581_GuccioneInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:39.602Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv The Dixmier Conjecture and the shape of possible counterexamples
title The Dixmier Conjecture and the shape of possible counterexamples
spellingShingle The Dixmier Conjecture and the shape of possible counterexamples
Guccione, J.A.
Dixmier Conjecture
Weyl algebra
title_short The Dixmier Conjecture and the shape of possible counterexamples
title_full The Dixmier Conjecture and the shape of possible counterexamples
title_fullStr The Dixmier Conjecture and the shape of possible counterexamples
title_full_unstemmed The Dixmier Conjecture and the shape of possible counterexamples
title_sort The Dixmier Conjecture and the shape of possible counterexamples
dc.creator.none.fl_str_mv Guccione, J.A.
Guccione, J.J.
Valqui, C.
author Guccione, J.A.
author_facet Guccione, J.A.
Guccione, J.J.
Valqui, C.
author_role author
author2 Guccione, J.J.
Valqui, C.
author2_role author
author
dc.subject.none.fl_str_mv Dixmier Conjecture
Weyl algebra
topic Dixmier Conjecture
Weyl algebra
dc.description.none.fl_txt_mv We establish a lower bound for the size of possible counterexamples of the Dixmier Conjecture. We prove that B>. 15, where B is the minimum of the greatest common divisor of the total degrees of P and Q, where (P, Q) runs over the counterexamples of the Dixmier Conjecture. © 2013 Elsevier Inc.
Fil:Guccione, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Guccione, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description We establish a lower bound for the size of possible counterexamples of the Dixmier Conjecture. We prove that B>. 15, where B is the minimum of the greatest common divisor of the total degrees of P and Q, where (P, Q) runs over the counterexamples of the Dixmier Conjecture. © 2013 Elsevier Inc.
publishDate 2014
dc.date.none.fl_str_mv 2014
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_00218693_v399_n_p581_Guccione
url http://hdl.handle.net/20.500.12110/paper_00218693_v399_n_p581_Guccione
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Algebra 2014;399:581-633
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1842340705594245120
score 12.623145