Extension of polynomials and John's theorem for symmetric tensor products.

Autores
Carando, Daniel Germán; Dimant, Veronica Isabel
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We show that for every infinite-dimensional normed space E and every k ≥ 3 there are extendible k-homogeneous polynomials which are not integral. As a consequence, we prove a symmetric version of a result of John.
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Dimant, Veronica Isabel. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Extendible polynomials
symmetric tensor products
Grothendieck's conjecture
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/125494

id CONICETDig_110b4aa810bc9af9c3b8427974c08ab3
oai_identifier_str oai:ri.conicet.gov.ar:11336/125494
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Extension of polynomials and John's theorem for symmetric tensor products.Carando, Daniel GermánDimant, Veronica IsabelExtendible polynomialssymmetric tensor productsGrothendieck's conjecturehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We show that for every infinite-dimensional normed space E and every k ≥ 3 there are extendible k-homogeneous polynomials which are not integral. As a consequence, we prove a symmetric version of a result of John.Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Dimant, Veronica Isabel. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Mathematical Society2007-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/125494Carando, Daniel Germán; Dimant, Veronica Isabel; Extension of polynomials and John's theorem for symmetric tensor products.; American Mathematical Society; Proceedings of the American Mathematical Society; 135; 12-2007; 1769-17730002-9939CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2007-135-06/S0002-9939-06-08666-7/S0002-9939-06-08666-7.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:44:38Zoai:ri.conicet.gov.ar:11336/125494instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:44:38.765CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Extension of polynomials and John's theorem for symmetric tensor products.
title Extension of polynomials and John's theorem for symmetric tensor products.
spellingShingle Extension of polynomials and John's theorem for symmetric tensor products.
Carando, Daniel Germán
Extendible polynomials
symmetric tensor products
Grothendieck's conjecture
title_short Extension of polynomials and John's theorem for symmetric tensor products.
title_full Extension of polynomials and John's theorem for symmetric tensor products.
title_fullStr Extension of polynomials and John's theorem for symmetric tensor products.
title_full_unstemmed Extension of polynomials and John's theorem for symmetric tensor products.
title_sort Extension of polynomials and John's theorem for symmetric tensor products.
dc.creator.none.fl_str_mv Carando, Daniel Germán
Dimant, Veronica Isabel
author Carando, Daniel Germán
author_facet Carando, Daniel Germán
Dimant, Veronica Isabel
author_role author
author2 Dimant, Veronica Isabel
author2_role author
dc.subject.none.fl_str_mv Extendible polynomials
symmetric tensor products
Grothendieck's conjecture
topic Extendible polynomials
symmetric tensor products
Grothendieck's conjecture
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We show that for every infinite-dimensional normed space E and every k ≥ 3 there are extendible k-homogeneous polynomials which are not integral. As a consequence, we prove a symmetric version of a result of John.
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Dimant, Veronica Isabel. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description We show that for every infinite-dimensional normed space E and every k ≥ 3 there are extendible k-homogeneous polynomials which are not integral. As a consequence, we prove a symmetric version of a result of John.
publishDate 2007
dc.date.none.fl_str_mv 2007-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/125494
Carando, Daniel Germán; Dimant, Veronica Isabel; Extension of polynomials and John's theorem for symmetric tensor products.; American Mathematical Society; Proceedings of the American Mathematical Society; 135; 12-2007; 1769-1773
0002-9939
CONICET Digital
CONICET
url http://hdl.handle.net/11336/125494
identifier_str_mv Carando, Daniel Germán; Dimant, Veronica Isabel; Extension of polynomials and John's theorem for symmetric tensor products.; American Mathematical Society; Proceedings of the American Mathematical Society; 135; 12-2007; 1769-1773
0002-9939
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2007-135-06/S0002-9939-06-08666-7/S0002-9939-06-08666-7.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Mathematical Society
publisher.none.fl_str_mv American Mathematical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613405117251584
score 13.070432