Collective variable driven molecular dynamics to improve protein­ protein docking scoring

Autores
Masone, Diego Fernando; Grosdidier, Solène
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In biophysics, the structural prediction of protein–protein complexes starting from the unbound form of the two interacting monomers is a major difficulty. Although current computational docking protocols are able to generate near-native solutions in a reasonable time, the problem of identifying near-native conformations from a pool of solutions remains very challenging. In this study, we use molecular dynamics simulations driven by a collective reaction coordinate to optimize full hydrogen bond networks in a set of protein–protein docking solutions. The collective coordinate biases the system to maximize the formation of hydrogen bonds at the protein–protein interface as well as all over the structure. The reaction coordinate is therefore a measure for docking poses affinity and hence is used as scoring function to identify near-native conformations.
Fil: Masone, Diego Fernando. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Grosdidier, Solène. Universitat Pompeu Fabra. Hospital del Mar Research Institute. Research Programme on Biomedical Informatics; España
Materia
Protein-Protein
Docking Scoring
Molecular Dynamics
Collective Variable
Scoring
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/25536

id CONICETDig_afd85662aed8af6a5587693f39f38354
oai_identifier_str oai:ri.conicet.gov.ar:11336/25536
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Collective variable driven molecular dynamics to improve protein­ protein docking scoringMasone, Diego FernandoGrosdidier, SolèneProtein-ProteinDocking ScoringMolecular DynamicsCollective VariableScoringhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1In biophysics, the structural prediction of protein–protein complexes starting from the unbound form of the two interacting monomers is a major difficulty. Although current computational docking protocols are able to generate near-native solutions in a reasonable time, the problem of identifying near-native conformations from a pool of solutions remains very challenging. In this study, we use molecular dynamics simulations driven by a collective reaction coordinate to optimize full hydrogen bond networks in a set of protein–protein docking solutions. The collective coordinate biases the system to maximize the formation of hydrogen bonds at the protein–protein interface as well as all over the structure. The reaction coordinate is therefore a measure for docking poses affinity and hence is used as scoring function to identify near-native conformations.Fil: Masone, Diego Fernando. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Grosdidier, Solène. Universitat Pompeu Fabra. Hospital del Mar Research Institute. Research Programme on Biomedical Informatics; EspañaElsevier2013-12-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/25536Masone, Diego Fernando; Grosdidier, Solène; Collective variable driven molecular dynamics to improve protein­ protein docking scoring; Elsevier; Computational Biology And Chemistry; 49; 28-12-2013; 1-61476-9271CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1476927114000024info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compbiolchem.2013.12.003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:57:41Zoai:ri.conicet.gov.ar:11336/25536instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:57:42.237CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Collective variable driven molecular dynamics to improve protein­ protein docking scoring
title Collective variable driven molecular dynamics to improve protein­ protein docking scoring
spellingShingle Collective variable driven molecular dynamics to improve protein­ protein docking scoring
Masone, Diego Fernando
Protein-Protein
Docking Scoring
Molecular Dynamics
Collective Variable
Scoring
title_short Collective variable driven molecular dynamics to improve protein­ protein docking scoring
title_full Collective variable driven molecular dynamics to improve protein­ protein docking scoring
title_fullStr Collective variable driven molecular dynamics to improve protein­ protein docking scoring
title_full_unstemmed Collective variable driven molecular dynamics to improve protein­ protein docking scoring
title_sort Collective variable driven molecular dynamics to improve protein­ protein docking scoring
dc.creator.none.fl_str_mv Masone, Diego Fernando
Grosdidier, Solène
author Masone, Diego Fernando
author_facet Masone, Diego Fernando
Grosdidier, Solène
author_role author
author2 Grosdidier, Solène
author2_role author
dc.subject.none.fl_str_mv Protein-Protein
Docking Scoring
Molecular Dynamics
Collective Variable
Scoring
topic Protein-Protein
Docking Scoring
Molecular Dynamics
Collective Variable
Scoring
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In biophysics, the structural prediction of protein–protein complexes starting from the unbound form of the two interacting monomers is a major difficulty. Although current computational docking protocols are able to generate near-native solutions in a reasonable time, the problem of identifying near-native conformations from a pool of solutions remains very challenging. In this study, we use molecular dynamics simulations driven by a collective reaction coordinate to optimize full hydrogen bond networks in a set of protein–protein docking solutions. The collective coordinate biases the system to maximize the formation of hydrogen bonds at the protein–protein interface as well as all over the structure. The reaction coordinate is therefore a measure for docking poses affinity and hence is used as scoring function to identify near-native conformations.
Fil: Masone, Diego Fernando. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Grosdidier, Solène. Universitat Pompeu Fabra. Hospital del Mar Research Institute. Research Programme on Biomedical Informatics; España
description In biophysics, the structural prediction of protein–protein complexes starting from the unbound form of the two interacting monomers is a major difficulty. Although current computational docking protocols are able to generate near-native solutions in a reasonable time, the problem of identifying near-native conformations from a pool of solutions remains very challenging. In this study, we use molecular dynamics simulations driven by a collective reaction coordinate to optimize full hydrogen bond networks in a set of protein–protein docking solutions. The collective coordinate biases the system to maximize the formation of hydrogen bonds at the protein–protein interface as well as all over the structure. The reaction coordinate is therefore a measure for docking poses affinity and hence is used as scoring function to identify near-native conformations.
publishDate 2013
dc.date.none.fl_str_mv 2013-12-28
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/25536
Masone, Diego Fernando; Grosdidier, Solène; Collective variable driven molecular dynamics to improve protein­ protein docking scoring; Elsevier; Computational Biology And Chemistry; 49; 28-12-2013; 1-6
1476-9271
CONICET Digital
CONICET
url http://hdl.handle.net/11336/25536
identifier_str_mv Masone, Diego Fernando; Grosdidier, Solène; Collective variable driven molecular dynamics to improve protein­ protein docking scoring; Elsevier; Computational Biology And Chemistry; 49; 28-12-2013; 1-6
1476-9271
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1476927114000024
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compbiolchem.2013.12.003
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083116125388800
score 13.22299