Vinardo: A scoring function based on autodock vina improves scoring, docking, and virtual screening

Autores
Quiroga, Rodrigo; Villarreal, Marcos Ariel
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Autodock Vina is a very popular, and highly cited, open source docking program. Here we present a scoring function which we call Vinardo (Vina RaDii Optimized). Vinardo is based on Vina, and was trained through a novel approach, on state of the art datasets. We show that the traditional approach to train empirical scoring functions, using linear regression to optimize the correlation of predicted and experimental binding affinities, does not result in a function with optimal docking capabilities. On the other hand, a combination of scoring, minimization, and re-docking on carefully curated training datasets allowed us to develop a simplified scoring function with optimum docking performance. This article provides an overview of the development of the Vinardo scoring function, highlights its differences with Vina, and compares the performance of the two scoring functions in scoring, docking and virtual screening applications. Vinardo outperforms Vina in all tests performed, for all datasets analyzed. The Vinardo scoring function is available as an option within Smina, a fork of Vina, which is freely available under the GNU Public License v2.0 from http://smina.sf.net. Precompiled binaries, source code, documentation and a tutorial for using Smina to run the Vinardo scoring function are available at the same address.
Fil: Quiroga, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Villarreal, Marcos Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Materia
DOCKING MOLECULAR
LIGANDO
PROTEÍNA
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/54341

id CONICETDig_22bdcc8574918beabea8db0ca5860037
oai_identifier_str oai:ri.conicet.gov.ar:11336/54341
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Vinardo: A scoring function based on autodock vina improves scoring, docking, and virtual screeningQuiroga, RodrigoVillarreal, Marcos ArielDOCKING MOLECULARLIGANDOPROTEÍNAhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Autodock Vina is a very popular, and highly cited, open source docking program. Here we present a scoring function which we call Vinardo (Vina RaDii Optimized). Vinardo is based on Vina, and was trained through a novel approach, on state of the art datasets. We show that the traditional approach to train empirical scoring functions, using linear regression to optimize the correlation of predicted and experimental binding affinities, does not result in a function with optimal docking capabilities. On the other hand, a combination of scoring, minimization, and re-docking on carefully curated training datasets allowed us to develop a simplified scoring function with optimum docking performance. This article provides an overview of the development of the Vinardo scoring function, highlights its differences with Vina, and compares the performance of the two scoring functions in scoring, docking and virtual screening applications. Vinardo outperforms Vina in all tests performed, for all datasets analyzed. The Vinardo scoring function is available as an option within Smina, a fork of Vina, which is freely available under the GNU Public License v2.0 from http://smina.sf.net. Precompiled binaries, source code, documentation and a tutorial for using Smina to run the Vinardo scoring function are available at the same address.Fil: Quiroga, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Villarreal, Marcos Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaPublic Library of Science2016-05-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/54341Quiroga, Rodrigo; Villarreal, Marcos Ariel; Vinardo: A scoring function based on autodock vina improves scoring, docking, and virtual screening; Public Library of Science; Plos One; 11; 5; 12-5-2016; 1-18; e0151831932-6203CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0155183info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0155183info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T10:46:58Zoai:ri.conicet.gov.ar:11336/54341instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 10:46:59.053CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Vinardo: A scoring function based on autodock vina improves scoring, docking, and virtual screening
title Vinardo: A scoring function based on autodock vina improves scoring, docking, and virtual screening
spellingShingle Vinardo: A scoring function based on autodock vina improves scoring, docking, and virtual screening
Quiroga, Rodrigo
DOCKING MOLECULAR
LIGANDO
PROTEÍNA
title_short Vinardo: A scoring function based on autodock vina improves scoring, docking, and virtual screening
title_full Vinardo: A scoring function based on autodock vina improves scoring, docking, and virtual screening
title_fullStr Vinardo: A scoring function based on autodock vina improves scoring, docking, and virtual screening
title_full_unstemmed Vinardo: A scoring function based on autodock vina improves scoring, docking, and virtual screening
title_sort Vinardo: A scoring function based on autodock vina improves scoring, docking, and virtual screening
dc.creator.none.fl_str_mv Quiroga, Rodrigo
Villarreal, Marcos Ariel
author Quiroga, Rodrigo
author_facet Quiroga, Rodrigo
Villarreal, Marcos Ariel
author_role author
author2 Villarreal, Marcos Ariel
author2_role author
dc.subject.none.fl_str_mv DOCKING MOLECULAR
LIGANDO
PROTEÍNA
topic DOCKING MOLECULAR
LIGANDO
PROTEÍNA
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Autodock Vina is a very popular, and highly cited, open source docking program. Here we present a scoring function which we call Vinardo (Vina RaDii Optimized). Vinardo is based on Vina, and was trained through a novel approach, on state of the art datasets. We show that the traditional approach to train empirical scoring functions, using linear regression to optimize the correlation of predicted and experimental binding affinities, does not result in a function with optimal docking capabilities. On the other hand, a combination of scoring, minimization, and re-docking on carefully curated training datasets allowed us to develop a simplified scoring function with optimum docking performance. This article provides an overview of the development of the Vinardo scoring function, highlights its differences with Vina, and compares the performance of the two scoring functions in scoring, docking and virtual screening applications. Vinardo outperforms Vina in all tests performed, for all datasets analyzed. The Vinardo scoring function is available as an option within Smina, a fork of Vina, which is freely available under the GNU Public License v2.0 from http://smina.sf.net. Precompiled binaries, source code, documentation and a tutorial for using Smina to run the Vinardo scoring function are available at the same address.
Fil: Quiroga, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Villarreal, Marcos Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
description Autodock Vina is a very popular, and highly cited, open source docking program. Here we present a scoring function which we call Vinardo (Vina RaDii Optimized). Vinardo is based on Vina, and was trained through a novel approach, on state of the art datasets. We show that the traditional approach to train empirical scoring functions, using linear regression to optimize the correlation of predicted and experimental binding affinities, does not result in a function with optimal docking capabilities. On the other hand, a combination of scoring, minimization, and re-docking on carefully curated training datasets allowed us to develop a simplified scoring function with optimum docking performance. This article provides an overview of the development of the Vinardo scoring function, highlights its differences with Vina, and compares the performance of the two scoring functions in scoring, docking and virtual screening applications. Vinardo outperforms Vina in all tests performed, for all datasets analyzed. The Vinardo scoring function is available as an option within Smina, a fork of Vina, which is freely available under the GNU Public License v2.0 from http://smina.sf.net. Precompiled binaries, source code, documentation and a tutorial for using Smina to run the Vinardo scoring function are available at the same address.
publishDate 2016
dc.date.none.fl_str_mv 2016-05-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/54341
Quiroga, Rodrigo; Villarreal, Marcos Ariel; Vinardo: A scoring function based on autodock vina improves scoring, docking, and virtual screening; Public Library of Science; Plos One; 11; 5; 12-5-2016; 1-18; e015183
1932-6203
CONICET Digital
CONICET
url http://hdl.handle.net/11336/54341
identifier_str_mv Quiroga, Rodrigo; Villarreal, Marcos Ariel; Vinardo: A scoring function based on autodock vina improves scoring, docking, and virtual screening; Public Library of Science; Plos One; 11; 5; 12-5-2016; 1-18; e015183
1932-6203
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0155183
info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0155183
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Public Library of Science
publisher.none.fl_str_mv Public Library of Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843606046996692992
score 13.000565