Vinardo: A scoring function based on autodock vina improves scoring, docking, and virtual screening
- Autores
- Quiroga, Rodrigo; Villarreal, Marcos Ariel
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Autodock Vina is a very popular, and highly cited, open source docking program. Here we present a scoring function which we call Vinardo (Vina RaDii Optimized). Vinardo is based on Vina, and was trained through a novel approach, on state of the art datasets. We show that the traditional approach to train empirical scoring functions, using linear regression to optimize the correlation of predicted and experimental binding affinities, does not result in a function with optimal docking capabilities. On the other hand, a combination of scoring, minimization, and re-docking on carefully curated training datasets allowed us to develop a simplified scoring function with optimum docking performance. This article provides an overview of the development of the Vinardo scoring function, highlights its differences with Vina, and compares the performance of the two scoring functions in scoring, docking and virtual screening applications. Vinardo outperforms Vina in all tests performed, for all datasets analyzed. The Vinardo scoring function is available as an option within Smina, a fork of Vina, which is freely available under the GNU Public License v2.0 from http://smina.sf.net. Precompiled binaries, source code, documentation and a tutorial for using Smina to run the Vinardo scoring function are available at the same address.
Fil: Quiroga, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Villarreal, Marcos Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina - Materia
-
DOCKING MOLECULAR
LIGANDO
PROTEÍNA - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/54341
Ver los metadatos del registro completo
id |
CONICETDig_22bdcc8574918beabea8db0ca5860037 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/54341 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Vinardo: A scoring function based on autodock vina improves scoring, docking, and virtual screeningQuiroga, RodrigoVillarreal, Marcos ArielDOCKING MOLECULARLIGANDOPROTEÍNAhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Autodock Vina is a very popular, and highly cited, open source docking program. Here we present a scoring function which we call Vinardo (Vina RaDii Optimized). Vinardo is based on Vina, and was trained through a novel approach, on state of the art datasets. We show that the traditional approach to train empirical scoring functions, using linear regression to optimize the correlation of predicted and experimental binding affinities, does not result in a function with optimal docking capabilities. On the other hand, a combination of scoring, minimization, and re-docking on carefully curated training datasets allowed us to develop a simplified scoring function with optimum docking performance. This article provides an overview of the development of the Vinardo scoring function, highlights its differences with Vina, and compares the performance of the two scoring functions in scoring, docking and virtual screening applications. Vinardo outperforms Vina in all tests performed, for all datasets analyzed. The Vinardo scoring function is available as an option within Smina, a fork of Vina, which is freely available under the GNU Public License v2.0 from http://smina.sf.net. Precompiled binaries, source code, documentation and a tutorial for using Smina to run the Vinardo scoring function are available at the same address.Fil: Quiroga, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Villarreal, Marcos Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaPublic Library of Science2016-05-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/54341Quiroga, Rodrigo; Villarreal, Marcos Ariel; Vinardo: A scoring function based on autodock vina improves scoring, docking, and virtual screening; Public Library of Science; Plos One; 11; 5; 12-5-2016; 1-18; e0151831932-6203CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0155183info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0155183info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T10:46:58Zoai:ri.conicet.gov.ar:11336/54341instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 10:46:59.053CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Vinardo: A scoring function based on autodock vina improves scoring, docking, and virtual screening |
title |
Vinardo: A scoring function based on autodock vina improves scoring, docking, and virtual screening |
spellingShingle |
Vinardo: A scoring function based on autodock vina improves scoring, docking, and virtual screening Quiroga, Rodrigo DOCKING MOLECULAR LIGANDO PROTEÍNA |
title_short |
Vinardo: A scoring function based on autodock vina improves scoring, docking, and virtual screening |
title_full |
Vinardo: A scoring function based on autodock vina improves scoring, docking, and virtual screening |
title_fullStr |
Vinardo: A scoring function based on autodock vina improves scoring, docking, and virtual screening |
title_full_unstemmed |
Vinardo: A scoring function based on autodock vina improves scoring, docking, and virtual screening |
title_sort |
Vinardo: A scoring function based on autodock vina improves scoring, docking, and virtual screening |
dc.creator.none.fl_str_mv |
Quiroga, Rodrigo Villarreal, Marcos Ariel |
author |
Quiroga, Rodrigo |
author_facet |
Quiroga, Rodrigo Villarreal, Marcos Ariel |
author_role |
author |
author2 |
Villarreal, Marcos Ariel |
author2_role |
author |
dc.subject.none.fl_str_mv |
DOCKING MOLECULAR LIGANDO PROTEÍNA |
topic |
DOCKING MOLECULAR LIGANDO PROTEÍNA |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Autodock Vina is a very popular, and highly cited, open source docking program. Here we present a scoring function which we call Vinardo (Vina RaDii Optimized). Vinardo is based on Vina, and was trained through a novel approach, on state of the art datasets. We show that the traditional approach to train empirical scoring functions, using linear regression to optimize the correlation of predicted and experimental binding affinities, does not result in a function with optimal docking capabilities. On the other hand, a combination of scoring, minimization, and re-docking on carefully curated training datasets allowed us to develop a simplified scoring function with optimum docking performance. This article provides an overview of the development of the Vinardo scoring function, highlights its differences with Vina, and compares the performance of the two scoring functions in scoring, docking and virtual screening applications. Vinardo outperforms Vina in all tests performed, for all datasets analyzed. The Vinardo scoring function is available as an option within Smina, a fork of Vina, which is freely available under the GNU Public License v2.0 from http://smina.sf.net. Precompiled binaries, source code, documentation and a tutorial for using Smina to run the Vinardo scoring function are available at the same address. Fil: Quiroga, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina Fil: Villarreal, Marcos Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina |
description |
Autodock Vina is a very popular, and highly cited, open source docking program. Here we present a scoring function which we call Vinardo (Vina RaDii Optimized). Vinardo is based on Vina, and was trained through a novel approach, on state of the art datasets. We show that the traditional approach to train empirical scoring functions, using linear regression to optimize the correlation of predicted and experimental binding affinities, does not result in a function with optimal docking capabilities. On the other hand, a combination of scoring, minimization, and re-docking on carefully curated training datasets allowed us to develop a simplified scoring function with optimum docking performance. This article provides an overview of the development of the Vinardo scoring function, highlights its differences with Vina, and compares the performance of the two scoring functions in scoring, docking and virtual screening applications. Vinardo outperforms Vina in all tests performed, for all datasets analyzed. The Vinardo scoring function is available as an option within Smina, a fork of Vina, which is freely available under the GNU Public License v2.0 from http://smina.sf.net. Precompiled binaries, source code, documentation and a tutorial for using Smina to run the Vinardo scoring function are available at the same address. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-05-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/54341 Quiroga, Rodrigo; Villarreal, Marcos Ariel; Vinardo: A scoring function based on autodock vina improves scoring, docking, and virtual screening; Public Library of Science; Plos One; 11; 5; 12-5-2016; 1-18; e015183 1932-6203 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/54341 |
identifier_str_mv |
Quiroga, Rodrigo; Villarreal, Marcos Ariel; Vinardo: A scoring function based on autodock vina improves scoring, docking, and virtual screening; Public Library of Science; Plos One; 11; 5; 12-5-2016; 1-18; e015183 1932-6203 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0155183 info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0155183 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Public Library of Science |
publisher.none.fl_str_mv |
Public Library of Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606046996692992 |
score |
13.000565 |