Exponential consensus ranking improves the outcome in docking and receptor ensemble docking
- Autores
- Palacio Rodríguez, Karen; Lans, Isaías; Cavasotto, Claudio Norberto; Cossio, Pilar
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Consensus-scoring methods are commonly used with molecular docking in virtual screening campaigns to filter potential ligands for a protein target. Traditional consensus methods combine results from different docking programs by averaging the score or rank of each molecule obtained from individual programs. Unfortunately, these methods fail if one of the docking programs has poor performance, which is likely to occur due to training-set dependencies and scoring-function parameterization. In this work, we introduce a novel consensus method that overcomes these limitations. We combine the results from individual docking programs using a sum of exponential distributions as a function of the molecule rank for each program. We test the method over several benchmark systems using individual and ensembles of target structures from diverse protein families with challenging decoy/ligand datasets. The results demonstrate that the novel method outperforms the best traditional consensus strategies over a wide range of systems. Moreover, because the novel method is based on the rank rather than the score, it is independent of the score units, scales and offsets, which can hinder the combination of results from different structures or programs. Our method is simple and robust, providing a theoretical basis not only for molecular docking but also for any consensus strategy in general.
Fil: Palacio Rodríguez, Karen. Universidad de Antioquia; Colombia
Fil: Lans, Isaías. Universidad de Antioquia; Colombia
Fil: Cavasotto, Claudio Norberto. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; Argentina
Fil: Cossio, Pilar. Universidad de Antioquia; Colombia - Materia
-
DOCKING
ENRICHMENT FACTOR
CONSENSUS SCORING
ENSEMBLE DOCKING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/163874
Ver los metadatos del registro completo
id |
CONICETDig_bde84479e88cf7be83c4701620a00e69 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/163874 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Exponential consensus ranking improves the outcome in docking and receptor ensemble dockingPalacio Rodríguez, KarenLans, IsaíasCavasotto, Claudio NorbertoCossio, PilarDOCKINGENRICHMENT FACTORCONSENSUS SCORINGENSEMBLE DOCKINGhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Consensus-scoring methods are commonly used with molecular docking in virtual screening campaigns to filter potential ligands for a protein target. Traditional consensus methods combine results from different docking programs by averaging the score or rank of each molecule obtained from individual programs. Unfortunately, these methods fail if one of the docking programs has poor performance, which is likely to occur due to training-set dependencies and scoring-function parameterization. In this work, we introduce a novel consensus method that overcomes these limitations. We combine the results from individual docking programs using a sum of exponential distributions as a function of the molecule rank for each program. We test the method over several benchmark systems using individual and ensembles of target structures from diverse protein families with challenging decoy/ligand datasets. The results demonstrate that the novel method outperforms the best traditional consensus strategies over a wide range of systems. Moreover, because the novel method is based on the rank rather than the score, it is independent of the score units, scales and offsets, which can hinder the combination of results from different structures or programs. Our method is simple and robust, providing a theoretical basis not only for molecular docking but also for any consensus strategy in general.Fil: Palacio Rodríguez, Karen. Universidad de Antioquia; ColombiaFil: Lans, Isaías. Universidad de Antioquia; ColombiaFil: Cavasotto, Claudio Norberto. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; ArgentinaFil: Cossio, Pilar. Universidad de Antioquia; ColombiaNature Publishing Group2019-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/163874Palacio Rodríguez, Karen; Lans, Isaías; Cavasotto, Claudio Norberto; Cossio, Pilar; Exponential consensus ranking improves the outcome in docking and receptor ensemble docking; Nature Publishing Group; Scientific Reports; 9; 1; 3-2019; 5142-51422045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-019-41594-3info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-019-41594-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:04:24Zoai:ri.conicet.gov.ar:11336/163874instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:04:24.456CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Exponential consensus ranking improves the outcome in docking and receptor ensemble docking |
title |
Exponential consensus ranking improves the outcome in docking and receptor ensemble docking |
spellingShingle |
Exponential consensus ranking improves the outcome in docking and receptor ensemble docking Palacio Rodríguez, Karen DOCKING ENRICHMENT FACTOR CONSENSUS SCORING ENSEMBLE DOCKING |
title_short |
Exponential consensus ranking improves the outcome in docking and receptor ensemble docking |
title_full |
Exponential consensus ranking improves the outcome in docking and receptor ensemble docking |
title_fullStr |
Exponential consensus ranking improves the outcome in docking and receptor ensemble docking |
title_full_unstemmed |
Exponential consensus ranking improves the outcome in docking and receptor ensemble docking |
title_sort |
Exponential consensus ranking improves the outcome in docking and receptor ensemble docking |
dc.creator.none.fl_str_mv |
Palacio Rodríguez, Karen Lans, Isaías Cavasotto, Claudio Norberto Cossio, Pilar |
author |
Palacio Rodríguez, Karen |
author_facet |
Palacio Rodríguez, Karen Lans, Isaías Cavasotto, Claudio Norberto Cossio, Pilar |
author_role |
author |
author2 |
Lans, Isaías Cavasotto, Claudio Norberto Cossio, Pilar |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
DOCKING ENRICHMENT FACTOR CONSENSUS SCORING ENSEMBLE DOCKING |
topic |
DOCKING ENRICHMENT FACTOR CONSENSUS SCORING ENSEMBLE DOCKING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Consensus-scoring methods are commonly used with molecular docking in virtual screening campaigns to filter potential ligands for a protein target. Traditional consensus methods combine results from different docking programs by averaging the score or rank of each molecule obtained from individual programs. Unfortunately, these methods fail if one of the docking programs has poor performance, which is likely to occur due to training-set dependencies and scoring-function parameterization. In this work, we introduce a novel consensus method that overcomes these limitations. We combine the results from individual docking programs using a sum of exponential distributions as a function of the molecule rank for each program. We test the method over several benchmark systems using individual and ensembles of target structures from diverse protein families with challenging decoy/ligand datasets. The results demonstrate that the novel method outperforms the best traditional consensus strategies over a wide range of systems. Moreover, because the novel method is based on the rank rather than the score, it is independent of the score units, scales and offsets, which can hinder the combination of results from different structures or programs. Our method is simple and robust, providing a theoretical basis not only for molecular docking but also for any consensus strategy in general. Fil: Palacio Rodríguez, Karen. Universidad de Antioquia; Colombia Fil: Lans, Isaías. Universidad de Antioquia; Colombia Fil: Cavasotto, Claudio Norberto. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; Argentina Fil: Cossio, Pilar. Universidad de Antioquia; Colombia |
description |
Consensus-scoring methods are commonly used with molecular docking in virtual screening campaigns to filter potential ligands for a protein target. Traditional consensus methods combine results from different docking programs by averaging the score or rank of each molecule obtained from individual programs. Unfortunately, these methods fail if one of the docking programs has poor performance, which is likely to occur due to training-set dependencies and scoring-function parameterization. In this work, we introduce a novel consensus method that overcomes these limitations. We combine the results from individual docking programs using a sum of exponential distributions as a function of the molecule rank for each program. We test the method over several benchmark systems using individual and ensembles of target structures from diverse protein families with challenging decoy/ligand datasets. The results demonstrate that the novel method outperforms the best traditional consensus strategies over a wide range of systems. Moreover, because the novel method is based on the rank rather than the score, it is independent of the score units, scales and offsets, which can hinder the combination of results from different structures or programs. Our method is simple and robust, providing a theoretical basis not only for molecular docking but also for any consensus strategy in general. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/163874 Palacio Rodríguez, Karen; Lans, Isaías; Cavasotto, Claudio Norberto; Cossio, Pilar; Exponential consensus ranking improves the outcome in docking and receptor ensemble docking; Nature Publishing Group; Scientific Reports; 9; 1; 3-2019; 5142-5142 2045-2322 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/163874 |
identifier_str_mv |
Palacio Rodríguez, Karen; Lans, Isaías; Cavasotto, Claudio Norberto; Cossio, Pilar; Exponential consensus ranking improves the outcome in docking and receptor ensemble docking; Nature Publishing Group; Scientific Reports; 9; 1; 3-2019; 5142-5142 2045-2322 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-019-41594-3 info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-019-41594-3 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature Publishing Group |
publisher.none.fl_str_mv |
Nature Publishing Group |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980145243095040 |
score |
12.993085 |