In silico Drug Repurposing for COVID-19: Targeting SARS-CoV-2 Proteins through Docking and Quantum Mechanical Scoring
- Autores
- Cavasotto, Claudio Norberto; Di Filippo, Juan Ignacio
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In December 2019, an infectious disease caused by the coronavirus SARS-CoV-2 appeared in Wuhan, China. This disease (COVID-19) spread rapidly worldwide, and on March 2020 was declared a pandemic by the World Health Organization (WHO). Today, almost 1,5 million people have been infected, with more than 85,000 casualties. Today, no vaccine nor antiviral drug is available. While the development of a vaccine might take at least a year, and for a novel drug, even longer; finding a new use to an old drug (drug repurposing) could be the most effective strategy. We present a docking-based screening using a quantum mechanical scoring of a library built from approved drugs and compounds undergoing clinical trials, against three SARS-CoV-2 target proteins: the spike or S-protein, and two proteases, the main protease and the papain-like protease. The S-protein binds directly to the Angiotensin Converting Enzyme 2 receptor of the human host cell surface, while the two proteases process viral polyproteins. Following the anaylysis of our structure-based compound screening, we propose several structurally diverse compounds (either FDA-approved or in clinical trials) that could display antiviral activity against SARS-CoV-2. Clearly, these compounds should be further evaluated in experimental assays and clinical trials to confirm their actual activity against the disease. We hope that these findings may contribute to the rational drug design against COVID-19.
Fil: Cavasotto, Claudio Norberto. Universidad Austral. Facultad de Ciencias Biomédicas; Argentina. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; Argentina
Fil: Di Filippo, Juan Ignacio. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; Argentina - Materia
-
COVID-19
SARS-COV-2
QUANTUM SCORING
DOCKING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/104110
Ver los metadatos del registro completo
id |
CONICETDig_13997ffd1975c229f6a67b39605dba3d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/104110 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
In silico Drug Repurposing for COVID-19: Targeting SARS-CoV-2 Proteins through Docking and Quantum Mechanical ScoringCavasotto, Claudio NorbertoDi Filippo, Juan IgnacioCOVID-19SARS-COV-2QUANTUM SCORINGDOCKINGhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1In December 2019, an infectious disease caused by the coronavirus SARS-CoV-2 appeared in Wuhan, China. This disease (COVID-19) spread rapidly worldwide, and on March 2020 was declared a pandemic by the World Health Organization (WHO). Today, almost 1,5 million people have been infected, with more than 85,000 casualties. Today, no vaccine nor antiviral drug is available. While the development of a vaccine might take at least a year, and for a novel drug, even longer; finding a new use to an old drug (drug repurposing) could be the most effective strategy. We present a docking-based screening using a quantum mechanical scoring of a library built from approved drugs and compounds undergoing clinical trials, against three SARS-CoV-2 target proteins: the spike or S-protein, and two proteases, the main protease and the papain-like protease. The S-protein binds directly to the Angiotensin Converting Enzyme 2 receptor of the human host cell surface, while the two proteases process viral polyproteins. Following the anaylysis of our structure-based compound screening, we propose several structurally diverse compounds (either FDA-approved or in clinical trials) that could display antiviral activity against SARS-CoV-2. Clearly, these compounds should be further evaluated in experimental assays and clinical trials to confirm their actual activity against the disease. We hope that these findings may contribute to the rational drug design against COVID-19.Fil: Cavasotto, Claudio Norberto. Universidad Austral. Facultad de Ciencias Biomédicas; Argentina. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; ArgentinaFil: Di Filippo, Juan Ignacio. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; ArgentinaAmerican Chemical Society2020-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/104110Cavasotto, Claudio Norberto; Di Filippo, Juan Ignacio; In silico Drug Repurposing for COVID-19: Targeting SARS-CoV-2 Proteins through Docking and Quantum Mechanical Scoring; American Chemical Society; ChemRxiv; 4-20202573-2293CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://chemrxiv.org/articles/In_silico_Drug_Repurposing_for_COVID-19_Targeting_SARS-CoV-2_Proteins_through_Docking_and_Quantum_Mechanical_Scoring/12110199info:eu-repo/semantics/altIdentifier/doi/10.26434/chemrxiv.12110199.v1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:58Zoai:ri.conicet.gov.ar:11336/104110instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:59.284CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
In silico Drug Repurposing for COVID-19: Targeting SARS-CoV-2 Proteins through Docking and Quantum Mechanical Scoring |
title |
In silico Drug Repurposing for COVID-19: Targeting SARS-CoV-2 Proteins through Docking and Quantum Mechanical Scoring |
spellingShingle |
In silico Drug Repurposing for COVID-19: Targeting SARS-CoV-2 Proteins through Docking and Quantum Mechanical Scoring Cavasotto, Claudio Norberto COVID-19 SARS-COV-2 QUANTUM SCORING DOCKING |
title_short |
In silico Drug Repurposing for COVID-19: Targeting SARS-CoV-2 Proteins through Docking and Quantum Mechanical Scoring |
title_full |
In silico Drug Repurposing for COVID-19: Targeting SARS-CoV-2 Proteins through Docking and Quantum Mechanical Scoring |
title_fullStr |
In silico Drug Repurposing for COVID-19: Targeting SARS-CoV-2 Proteins through Docking and Quantum Mechanical Scoring |
title_full_unstemmed |
In silico Drug Repurposing for COVID-19: Targeting SARS-CoV-2 Proteins through Docking and Quantum Mechanical Scoring |
title_sort |
In silico Drug Repurposing for COVID-19: Targeting SARS-CoV-2 Proteins through Docking and Quantum Mechanical Scoring |
dc.creator.none.fl_str_mv |
Cavasotto, Claudio Norberto Di Filippo, Juan Ignacio |
author |
Cavasotto, Claudio Norberto |
author_facet |
Cavasotto, Claudio Norberto Di Filippo, Juan Ignacio |
author_role |
author |
author2 |
Di Filippo, Juan Ignacio |
author2_role |
author |
dc.subject.none.fl_str_mv |
COVID-19 SARS-COV-2 QUANTUM SCORING DOCKING |
topic |
COVID-19 SARS-COV-2 QUANTUM SCORING DOCKING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In December 2019, an infectious disease caused by the coronavirus SARS-CoV-2 appeared in Wuhan, China. This disease (COVID-19) spread rapidly worldwide, and on March 2020 was declared a pandemic by the World Health Organization (WHO). Today, almost 1,5 million people have been infected, with more than 85,000 casualties. Today, no vaccine nor antiviral drug is available. While the development of a vaccine might take at least a year, and for a novel drug, even longer; finding a new use to an old drug (drug repurposing) could be the most effective strategy. We present a docking-based screening using a quantum mechanical scoring of a library built from approved drugs and compounds undergoing clinical trials, against three SARS-CoV-2 target proteins: the spike or S-protein, and two proteases, the main protease and the papain-like protease. The S-protein binds directly to the Angiotensin Converting Enzyme 2 receptor of the human host cell surface, while the two proteases process viral polyproteins. Following the anaylysis of our structure-based compound screening, we propose several structurally diverse compounds (either FDA-approved or in clinical trials) that could display antiviral activity against SARS-CoV-2. Clearly, these compounds should be further evaluated in experimental assays and clinical trials to confirm their actual activity against the disease. We hope that these findings may contribute to the rational drug design against COVID-19. Fil: Cavasotto, Claudio Norberto. Universidad Austral. Facultad de Ciencias Biomédicas; Argentina. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; Argentina Fil: Di Filippo, Juan Ignacio. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; Argentina |
description |
In December 2019, an infectious disease caused by the coronavirus SARS-CoV-2 appeared in Wuhan, China. This disease (COVID-19) spread rapidly worldwide, and on March 2020 was declared a pandemic by the World Health Organization (WHO). Today, almost 1,5 million people have been infected, with more than 85,000 casualties. Today, no vaccine nor antiviral drug is available. While the development of a vaccine might take at least a year, and for a novel drug, even longer; finding a new use to an old drug (drug repurposing) could be the most effective strategy. We present a docking-based screening using a quantum mechanical scoring of a library built from approved drugs and compounds undergoing clinical trials, against three SARS-CoV-2 target proteins: the spike or S-protein, and two proteases, the main protease and the papain-like protease. The S-protein binds directly to the Angiotensin Converting Enzyme 2 receptor of the human host cell surface, while the two proteases process viral polyproteins. Following the anaylysis of our structure-based compound screening, we propose several structurally diverse compounds (either FDA-approved or in clinical trials) that could display antiviral activity against SARS-CoV-2. Clearly, these compounds should be further evaluated in experimental assays and clinical trials to confirm their actual activity against the disease. We hope that these findings may contribute to the rational drug design against COVID-19. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/104110 Cavasotto, Claudio Norberto; Di Filippo, Juan Ignacio; In silico Drug Repurposing for COVID-19: Targeting SARS-CoV-2 Proteins through Docking and Quantum Mechanical Scoring; American Chemical Society; ChemRxiv; 4-2020 2573-2293 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/104110 |
identifier_str_mv |
Cavasotto, Claudio Norberto; Di Filippo, Juan Ignacio; In silico Drug Repurposing for COVID-19: Targeting SARS-CoV-2 Proteins through Docking and Quantum Mechanical Scoring; American Chemical Society; ChemRxiv; 4-2020 2573-2293 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://chemrxiv.org/articles/In_silico_Drug_Repurposing_for_COVID-19_Targeting_SARS-CoV-2_Proteins_through_Docking_and_Quantum_Mechanical_Scoring/12110199 info:eu-repo/semantics/altIdentifier/doi/10.26434/chemrxiv.12110199.v1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268701677584384 |
score |
13.13397 |