Exploring Scoring Function Space: Developing Computational Models for Drug Discovery

Autores
Bitencourt Ferreira, Gabriela; Villarreal, Marcos A.; Quiroga, Rodrigo; Biziukova, Nadezhda; Poroikov, Vladimir; Tarasova, Olga; de Azevedo, Walter F. Jr.
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Impact Factor (IF) - 2023 (2024 update): 3.5 This article was made available online on 14 de junio de 2023 as a Fast Track article with title: "Exploring Scoring Function Space: Developing Computational Models for Drug Discovery".
Fil: Bitencourt-Ferreira, Gabriela. Pontifical Catholic University of Rio Grande do Sul - PUCRS, Porto Alegre; Brazil.
Fil: Villarreal, Marcos A. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Matemática y Física; Argentina.
Fil: Villarreal, Marcos A. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina.
Fil: Quiroga, Rodrigo. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Matemática y Física; Argentina.
Fil: Quiroga, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina.
Fil: Biziukova, Nadezhda. Institute of Biomedical Chemistry, Moscow; Russia.
Fil: Poroikov, Vladimir. Institute of Biomedical Chemistry, Moscow; Russia.
Fil: Tarasova, Olga. Institute of Biomedical Chemistry, Moscow; Russia.
Fil: de Azevedo, Walter F. Jr. Pontifical Catholic University of Rio Grande do Sul - PUCRS, Porto Alegre; Brazil.
Fil: de Azevedo, Walter F. Jr. The Pontifical Catholic University of Rio Grande do Sul. Specialization Program in Bioinformatics, Porto Alegre; Brazil.
Background: The idea of scoring function space established a systems-level approach to address the development of models to predict the affinity of drug molecules by those interested in drug discovery. Objective: Our goal here is to review the concept of scoring function space and how to explore it to develop machine learning models to address protein-ligand binding affinity. Methods: We searched the articles available in PubMed related to the scoring function space. We also utilized crystallographic structures found in the protein data bank (PDB) to represent the protein space. Results: The application of systems-level approaches to address receptor-drug interactions allows us to have a holistic view of the process of drug discovery. The scoring function space adds flexibility to the process since it makes it possible to see drug discovery as a relationship involving mathematical spaces. Conclusion: The application of the concept of scoring function space has provided us with an integrated view of drug discovery methods. This concept is useful during drug discovery, where we see the process as a computational search of the scoring function space to find an adequate model to predict receptor-drug binding affinity.
info:eu-repo/semantics/publishedVersion
Fil: Bitencourt-Ferreira, Gabriela. Pontifical Catholic University of Rio Grande do Sul - PUCRS, Porto Alegre; Brazil.
Fil: Villarreal, Marcos A. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Matemática y Física; Argentina.
Fil: Villarreal, Marcos A. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina.
Fil: Quiroga, Rodrigo. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Matemática y Física; Argentina.
Fil: Quiroga, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina.
Fil: Biziukova, Nadezhda. Institute of Biomedical Chemistry, Moscow; Russia.
Fil: Poroikov, Vladimir. Institute of Biomedical Chemistry, Moscow; Russia.
Fil: Tarasova, Olga. Institute of Biomedical Chemistry, Moscow; Russia.
Fil: de Azevedo, Walter F. Jr. Pontifical Catholic University of Rio Grande do Sul - PUCRS, Porto Alegre; Brazil.
Fil: de Azevedo, Walter F. Jr. The Pontifical Catholic University of Rio Grande do Sul. Specialization Program in Bioinformatics, Porto Alegre; Brazil.
Materia
Scoring function space
Drug discovery
Machine learning
Protein space
Protein-ligand interactions
Systems biology
Nivel de accesibilidad
acceso abierto
Condiciones de uso
Repositorio
Repositorio Digital Universitario (UNC)
Institución
Universidad Nacional de Córdoba
OAI Identificador
oai:rdu.unc.edu.ar:11086/552745

id RDUUNC_d14d43970e90f5eca72107af7c894782
oai_identifier_str oai:rdu.unc.edu.ar:11086/552745
network_acronym_str RDUUNC
repository_id_str 2572
network_name_str Repositorio Digital Universitario (UNC)
spelling Exploring Scoring Function Space: Developing Computational Models for Drug DiscoveryBitencourt Ferreira, GabrielaVillarreal, Marcos A.Quiroga, RodrigoBiziukova, NadezhdaPoroikov, VladimirTarasova, Olgade Azevedo, Walter F. Jr.Scoring function spaceDrug discoveryMachine learningProtein spaceProtein-ligand interactionsSystems biologyImpact Factor (IF) - 2023 (2024 update): 3.5 This article was made available online on 14 de junio de 2023 as a Fast Track article with title: "Exploring Scoring Function Space: Developing Computational Models for Drug Discovery".Fil: Bitencourt-Ferreira, Gabriela. Pontifical Catholic University of Rio Grande do Sul - PUCRS, Porto Alegre; Brazil.Fil: Villarreal, Marcos A. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Matemática y Física; Argentina.Fil: Villarreal, Marcos A. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina.Fil: Quiroga, Rodrigo. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Matemática y Física; Argentina.Fil: Quiroga, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina.Fil: Biziukova, Nadezhda. Institute of Biomedical Chemistry, Moscow; Russia.Fil: Poroikov, Vladimir. Institute of Biomedical Chemistry, Moscow; Russia.Fil: Tarasova, Olga. Institute of Biomedical Chemistry, Moscow; Russia.Fil: de Azevedo, Walter F. Jr. Pontifical Catholic University of Rio Grande do Sul - PUCRS, Porto Alegre; Brazil.Fil: de Azevedo, Walter F. Jr. The Pontifical Catholic University of Rio Grande do Sul. Specialization Program in Bioinformatics, Porto Alegre; Brazil.Background: The idea of scoring function space established a systems-level approach to address the development of models to predict the affinity of drug molecules by those interested in drug discovery. Objective: Our goal here is to review the concept of scoring function space and how to explore it to develop machine learning models to address protein-ligand binding affinity. Methods: We searched the articles available in PubMed related to the scoring function space. We also utilized crystallographic structures found in the protein data bank (PDB) to represent the protein space. Results: The application of systems-level approaches to address receptor-drug interactions allows us to have a holistic view of the process of drug discovery. The scoring function space adds flexibility to the process since it makes it possible to see drug discovery as a relationship involving mathematical spaces. Conclusion: The application of the concept of scoring function space has provided us with an integrated view of drug discovery methods. This concept is useful during drug discovery, where we see the process as a computational search of the scoring function space to find an adequate model to predict receptor-drug binding affinity.info:eu-repo/semantics/publishedVersionFil: Bitencourt-Ferreira, Gabriela. Pontifical Catholic University of Rio Grande do Sul - PUCRS, Porto Alegre; Brazil.Fil: Villarreal, Marcos A. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Matemática y Física; Argentina.Fil: Villarreal, Marcos A. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina.Fil: Quiroga, Rodrigo. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Matemática y Física; Argentina.Fil: Quiroga, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina.Fil: Biziukova, Nadezhda. Institute of Biomedical Chemistry, Moscow; Russia.Fil: Poroikov, Vladimir. Institute of Biomedical Chemistry, Moscow; Russia.Fil: Tarasova, Olga. Institute of Biomedical Chemistry, Moscow; Russia.Fil: de Azevedo, Walter F. Jr. Pontifical Catholic University of Rio Grande do Sul - PUCRS, Porto Alegre; Brazil.Fil: de Azevedo, Walter F. Jr. The Pontifical Catholic University of Rio Grande do Sul. Specialization Program in Bioinformatics, Porto Alegre; Brazil.https://orcid.org/0000-0002-3120-8256https://orcid.org/0000-0001-8223-5193https://orcid.org/0000-0001-5015-0531https://orcid.org/0000-0002-2044-1327https://orcid.org/0000-0001-7937-2621https://orcid.org/0000-0002-3723-7832https://orcid.org/0000-0001-8640-357X2024-05-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfBitencourt-Ferreira, G., Villarreal, M. A., Quiroga, R., Biziukova, N., Poroikov, V., Tarasova, O., & de Azevedo Junior, W. F. (2024). Exploring Scoring Function Space: Developing Computational Models for Drug Discovery. Current Medicinal Chemistry, 31(17), 2361-2377.http://hdl.handle.net/11086/5527451875-533Xhttps://www.ingentaconnect.com/content/ben/cmc/2024/00000031/00000017/art00005https://pubmed.ncbi.nlm.nih.gov/36944627/http://doi.org/10.2174/0929867330666230321103731enginfo:eu-repo/semantics/openAccessreponame:Repositorio Digital Universitario (UNC)instname:Universidad Nacional de Córdobainstacron:UNC2025-09-29T13:43:35Zoai:rdu.unc.edu.ar:11086/552745Institucionalhttps://rdu.unc.edu.ar/Universidad públicaNo correspondehttp://rdu.unc.edu.ar/oai/snrdoca.unc@gmail.comArgentinaNo correspondeNo correspondeNo correspondeopendoar:25722025-09-29 13:43:35.473Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdobafalse
dc.title.none.fl_str_mv Exploring Scoring Function Space: Developing Computational Models for Drug Discovery
title Exploring Scoring Function Space: Developing Computational Models for Drug Discovery
spellingShingle Exploring Scoring Function Space: Developing Computational Models for Drug Discovery
Bitencourt Ferreira, Gabriela
Scoring function space
Drug discovery
Machine learning
Protein space
Protein-ligand interactions
Systems biology
title_short Exploring Scoring Function Space: Developing Computational Models for Drug Discovery
title_full Exploring Scoring Function Space: Developing Computational Models for Drug Discovery
title_fullStr Exploring Scoring Function Space: Developing Computational Models for Drug Discovery
title_full_unstemmed Exploring Scoring Function Space: Developing Computational Models for Drug Discovery
title_sort Exploring Scoring Function Space: Developing Computational Models for Drug Discovery
dc.creator.none.fl_str_mv Bitencourt Ferreira, Gabriela
Villarreal, Marcos A.
Quiroga, Rodrigo
Biziukova, Nadezhda
Poroikov, Vladimir
Tarasova, Olga
de Azevedo, Walter F. Jr.
author Bitencourt Ferreira, Gabriela
author_facet Bitencourt Ferreira, Gabriela
Villarreal, Marcos A.
Quiroga, Rodrigo
Biziukova, Nadezhda
Poroikov, Vladimir
Tarasova, Olga
de Azevedo, Walter F. Jr.
author_role author
author2 Villarreal, Marcos A.
Quiroga, Rodrigo
Biziukova, Nadezhda
Poroikov, Vladimir
Tarasova, Olga
de Azevedo, Walter F. Jr.
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv https://orcid.org/0000-0002-3120-8256
https://orcid.org/0000-0001-8223-5193
https://orcid.org/0000-0001-5015-0531
https://orcid.org/0000-0002-2044-1327
https://orcid.org/0000-0001-7937-2621
https://orcid.org/0000-0002-3723-7832
https://orcid.org/0000-0001-8640-357X
dc.subject.none.fl_str_mv Scoring function space
Drug discovery
Machine learning
Protein space
Protein-ligand interactions
Systems biology
topic Scoring function space
Drug discovery
Machine learning
Protein space
Protein-ligand interactions
Systems biology
dc.description.none.fl_txt_mv Impact Factor (IF) - 2023 (2024 update): 3.5 This article was made available online on 14 de junio de 2023 as a Fast Track article with title: "Exploring Scoring Function Space: Developing Computational Models for Drug Discovery".
Fil: Bitencourt-Ferreira, Gabriela. Pontifical Catholic University of Rio Grande do Sul - PUCRS, Porto Alegre; Brazil.
Fil: Villarreal, Marcos A. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Matemática y Física; Argentina.
Fil: Villarreal, Marcos A. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina.
Fil: Quiroga, Rodrigo. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Matemática y Física; Argentina.
Fil: Quiroga, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina.
Fil: Biziukova, Nadezhda. Institute of Biomedical Chemistry, Moscow; Russia.
Fil: Poroikov, Vladimir. Institute of Biomedical Chemistry, Moscow; Russia.
Fil: Tarasova, Olga. Institute of Biomedical Chemistry, Moscow; Russia.
Fil: de Azevedo, Walter F. Jr. Pontifical Catholic University of Rio Grande do Sul - PUCRS, Porto Alegre; Brazil.
Fil: de Azevedo, Walter F. Jr. The Pontifical Catholic University of Rio Grande do Sul. Specialization Program in Bioinformatics, Porto Alegre; Brazil.
Background: The idea of scoring function space established a systems-level approach to address the development of models to predict the affinity of drug molecules by those interested in drug discovery. Objective: Our goal here is to review the concept of scoring function space and how to explore it to develop machine learning models to address protein-ligand binding affinity. Methods: We searched the articles available in PubMed related to the scoring function space. We also utilized crystallographic structures found in the protein data bank (PDB) to represent the protein space. Results: The application of systems-level approaches to address receptor-drug interactions allows us to have a holistic view of the process of drug discovery. The scoring function space adds flexibility to the process since it makes it possible to see drug discovery as a relationship involving mathematical spaces. Conclusion: The application of the concept of scoring function space has provided us with an integrated view of drug discovery methods. This concept is useful during drug discovery, where we see the process as a computational search of the scoring function space to find an adequate model to predict receptor-drug binding affinity.
info:eu-repo/semantics/publishedVersion
Fil: Bitencourt-Ferreira, Gabriela. Pontifical Catholic University of Rio Grande do Sul - PUCRS, Porto Alegre; Brazil.
Fil: Villarreal, Marcos A. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Matemática y Física; Argentina.
Fil: Villarreal, Marcos A. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina.
Fil: Quiroga, Rodrigo. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Matemática y Física; Argentina.
Fil: Quiroga, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina.
Fil: Biziukova, Nadezhda. Institute of Biomedical Chemistry, Moscow; Russia.
Fil: Poroikov, Vladimir. Institute of Biomedical Chemistry, Moscow; Russia.
Fil: Tarasova, Olga. Institute of Biomedical Chemistry, Moscow; Russia.
Fil: de Azevedo, Walter F. Jr. Pontifical Catholic University of Rio Grande do Sul - PUCRS, Porto Alegre; Brazil.
Fil: de Azevedo, Walter F. Jr. The Pontifical Catholic University of Rio Grande do Sul. Specialization Program in Bioinformatics, Porto Alegre; Brazil.
description Impact Factor (IF) - 2023 (2024 update): 3.5 This article was made available online on 14 de junio de 2023 as a Fast Track article with title: "Exploring Scoring Function Space: Developing Computational Models for Drug Discovery".
publishDate 2024
dc.date.none.fl_str_mv 2024-05-01
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
status_str publishedVersion
format article
dc.identifier.none.fl_str_mv Bitencourt-Ferreira, G., Villarreal, M. A., Quiroga, R., Biziukova, N., Poroikov, V., Tarasova, O., & de Azevedo Junior, W. F. (2024). Exploring Scoring Function Space: Developing Computational Models for Drug Discovery. Current Medicinal Chemistry, 31(17), 2361-2377.
http://hdl.handle.net/11086/552745
1875-533X
https://www.ingentaconnect.com/content/ben/cmc/2024/00000031/00000017/art00005
https://pubmed.ncbi.nlm.nih.gov/36944627/
http://doi.org/10.2174/0929867330666230321103731
identifier_str_mv Bitencourt-Ferreira, G., Villarreal, M. A., Quiroga, R., Biziukova, N., Poroikov, V., Tarasova, O., & de Azevedo Junior, W. F. (2024). Exploring Scoring Function Space: Developing Computational Models for Drug Discovery. Current Medicinal Chemistry, 31(17), 2361-2377.
1875-533X
url http://hdl.handle.net/11086/552745
https://www.ingentaconnect.com/content/ben/cmc/2024/00000031/00000017/art00005
https://pubmed.ncbi.nlm.nih.gov/36944627/
http://doi.org/10.2174/0929867330666230321103731
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositorio Digital Universitario (UNC)
instname:Universidad Nacional de Córdoba
instacron:UNC
reponame_str Repositorio Digital Universitario (UNC)
collection Repositorio Digital Universitario (UNC)
instname_str Universidad Nacional de Córdoba
instacron_str UNC
institution UNC
repository.name.fl_str_mv Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdoba
repository.mail.fl_str_mv oca.unc@gmail.com
_version_ 1844618960303030272
score 13.070432