Exploring Scoring Function Space: Developing Computational Models for Drug Discovery
- Autores
- Bitencourt Ferreira, Gabriela; Villarreal, Marcos A.; Quiroga, Rodrigo; Biziukova, Nadezhda; Poroikov, Vladimir; Tarasova, Olga; de Azevedo, Walter F. Jr.
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Impact Factor (IF) - 2023 (2024 update): 3.5 This article was made available online on 14 de junio de 2023 as a Fast Track article with title: "Exploring Scoring Function Space: Developing Computational Models for Drug Discovery".
Fil: Bitencourt-Ferreira, Gabriela. Pontifical Catholic University of Rio Grande do Sul - PUCRS, Porto Alegre; Brazil.
Fil: Villarreal, Marcos A. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Matemática y Física; Argentina.
Fil: Villarreal, Marcos A. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina.
Fil: Quiroga, Rodrigo. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Matemática y Física; Argentina.
Fil: Quiroga, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina.
Fil: Biziukova, Nadezhda. Institute of Biomedical Chemistry, Moscow; Russia.
Fil: Poroikov, Vladimir. Institute of Biomedical Chemistry, Moscow; Russia.
Fil: Tarasova, Olga. Institute of Biomedical Chemistry, Moscow; Russia.
Fil: de Azevedo, Walter F. Jr. Pontifical Catholic University of Rio Grande do Sul - PUCRS, Porto Alegre; Brazil.
Fil: de Azevedo, Walter F. Jr. The Pontifical Catholic University of Rio Grande do Sul. Specialization Program in Bioinformatics, Porto Alegre; Brazil.
Background: The idea of scoring function space established a systems-level approach to address the development of models to predict the affinity of drug molecules by those interested in drug discovery. Objective: Our goal here is to review the concept of scoring function space and how to explore it to develop machine learning models to address protein-ligand binding affinity. Methods: We searched the articles available in PubMed related to the scoring function space. We also utilized crystallographic structures found in the protein data bank (PDB) to represent the protein space. Results: The application of systems-level approaches to address receptor-drug interactions allows us to have a holistic view of the process of drug discovery. The scoring function space adds flexibility to the process since it makes it possible to see drug discovery as a relationship involving mathematical spaces. Conclusion: The application of the concept of scoring function space has provided us with an integrated view of drug discovery methods. This concept is useful during drug discovery, where we see the process as a computational search of the scoring function space to find an adequate model to predict receptor-drug binding affinity.
info:eu-repo/semantics/publishedVersion
Fil: Bitencourt-Ferreira, Gabriela. Pontifical Catholic University of Rio Grande do Sul - PUCRS, Porto Alegre; Brazil.
Fil: Villarreal, Marcos A. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Matemática y Física; Argentina.
Fil: Villarreal, Marcos A. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina.
Fil: Quiroga, Rodrigo. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Matemática y Física; Argentina.
Fil: Quiroga, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina.
Fil: Biziukova, Nadezhda. Institute of Biomedical Chemistry, Moscow; Russia.
Fil: Poroikov, Vladimir. Institute of Biomedical Chemistry, Moscow; Russia.
Fil: Tarasova, Olga. Institute of Biomedical Chemistry, Moscow; Russia.
Fil: de Azevedo, Walter F. Jr. Pontifical Catholic University of Rio Grande do Sul - PUCRS, Porto Alegre; Brazil.
Fil: de Azevedo, Walter F. Jr. The Pontifical Catholic University of Rio Grande do Sul. Specialization Program in Bioinformatics, Porto Alegre; Brazil. - Materia
-
Scoring function space
Drug discovery
Machine learning
Protein space
Protein-ligand interactions
Systems biology - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- Repositorio
- Institución
- Universidad Nacional de Córdoba
- OAI Identificador
- oai:rdu.unc.edu.ar:11086/552745
Ver los metadatos del registro completo
id |
RDUUNC_d14d43970e90f5eca72107af7c894782 |
---|---|
oai_identifier_str |
oai:rdu.unc.edu.ar:11086/552745 |
network_acronym_str |
RDUUNC |
repository_id_str |
2572 |
network_name_str |
Repositorio Digital Universitario (UNC) |
spelling |
Exploring Scoring Function Space: Developing Computational Models for Drug DiscoveryBitencourt Ferreira, GabrielaVillarreal, Marcos A.Quiroga, RodrigoBiziukova, NadezhdaPoroikov, VladimirTarasova, Olgade Azevedo, Walter F. Jr.Scoring function spaceDrug discoveryMachine learningProtein spaceProtein-ligand interactionsSystems biologyImpact Factor (IF) - 2023 (2024 update): 3.5 This article was made available online on 14 de junio de 2023 as a Fast Track article with title: "Exploring Scoring Function Space: Developing Computational Models for Drug Discovery".Fil: Bitencourt-Ferreira, Gabriela. Pontifical Catholic University of Rio Grande do Sul - PUCRS, Porto Alegre; Brazil.Fil: Villarreal, Marcos A. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Matemática y Física; Argentina.Fil: Villarreal, Marcos A. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina.Fil: Quiroga, Rodrigo. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Matemática y Física; Argentina.Fil: Quiroga, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina.Fil: Biziukova, Nadezhda. Institute of Biomedical Chemistry, Moscow; Russia.Fil: Poroikov, Vladimir. Institute of Biomedical Chemistry, Moscow; Russia.Fil: Tarasova, Olga. Institute of Biomedical Chemistry, Moscow; Russia.Fil: de Azevedo, Walter F. Jr. Pontifical Catholic University of Rio Grande do Sul - PUCRS, Porto Alegre; Brazil.Fil: de Azevedo, Walter F. Jr. The Pontifical Catholic University of Rio Grande do Sul. Specialization Program in Bioinformatics, Porto Alegre; Brazil.Background: The idea of scoring function space established a systems-level approach to address the development of models to predict the affinity of drug molecules by those interested in drug discovery. Objective: Our goal here is to review the concept of scoring function space and how to explore it to develop machine learning models to address protein-ligand binding affinity. Methods: We searched the articles available in PubMed related to the scoring function space. We also utilized crystallographic structures found in the protein data bank (PDB) to represent the protein space. Results: The application of systems-level approaches to address receptor-drug interactions allows us to have a holistic view of the process of drug discovery. The scoring function space adds flexibility to the process since it makes it possible to see drug discovery as a relationship involving mathematical spaces. Conclusion: The application of the concept of scoring function space has provided us with an integrated view of drug discovery methods. This concept is useful during drug discovery, where we see the process as a computational search of the scoring function space to find an adequate model to predict receptor-drug binding affinity.info:eu-repo/semantics/publishedVersionFil: Bitencourt-Ferreira, Gabriela. Pontifical Catholic University of Rio Grande do Sul - PUCRS, Porto Alegre; Brazil.Fil: Villarreal, Marcos A. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Matemática y Física; Argentina.Fil: Villarreal, Marcos A. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina.Fil: Quiroga, Rodrigo. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Matemática y Física; Argentina.Fil: Quiroga, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina.Fil: Biziukova, Nadezhda. Institute of Biomedical Chemistry, Moscow; Russia.Fil: Poroikov, Vladimir. Institute of Biomedical Chemistry, Moscow; Russia.Fil: Tarasova, Olga. Institute of Biomedical Chemistry, Moscow; Russia.Fil: de Azevedo, Walter F. Jr. Pontifical Catholic University of Rio Grande do Sul - PUCRS, Porto Alegre; Brazil.Fil: de Azevedo, Walter F. Jr. The Pontifical Catholic University of Rio Grande do Sul. Specialization Program in Bioinformatics, Porto Alegre; Brazil.https://orcid.org/0000-0002-3120-8256https://orcid.org/0000-0001-8223-5193https://orcid.org/0000-0001-5015-0531https://orcid.org/0000-0002-2044-1327https://orcid.org/0000-0001-7937-2621https://orcid.org/0000-0002-3723-7832https://orcid.org/0000-0001-8640-357X2024-05-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfBitencourt-Ferreira, G., Villarreal, M. A., Quiroga, R., Biziukova, N., Poroikov, V., Tarasova, O., & de Azevedo Junior, W. F. (2024). Exploring Scoring Function Space: Developing Computational Models for Drug Discovery. Current Medicinal Chemistry, 31(17), 2361-2377.http://hdl.handle.net/11086/5527451875-533Xhttps://www.ingentaconnect.com/content/ben/cmc/2024/00000031/00000017/art00005https://pubmed.ncbi.nlm.nih.gov/36944627/http://doi.org/10.2174/0929867330666230321103731enginfo:eu-repo/semantics/openAccessreponame:Repositorio Digital Universitario (UNC)instname:Universidad Nacional de Córdobainstacron:UNC2025-09-29T13:43:35Zoai:rdu.unc.edu.ar:11086/552745Institucionalhttps://rdu.unc.edu.ar/Universidad públicaNo correspondehttp://rdu.unc.edu.ar/oai/snrdoca.unc@gmail.comArgentinaNo correspondeNo correspondeNo correspondeopendoar:25722025-09-29 13:43:35.473Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdobafalse |
dc.title.none.fl_str_mv |
Exploring Scoring Function Space: Developing Computational Models for Drug Discovery |
title |
Exploring Scoring Function Space: Developing Computational Models for Drug Discovery |
spellingShingle |
Exploring Scoring Function Space: Developing Computational Models for Drug Discovery Bitencourt Ferreira, Gabriela Scoring function space Drug discovery Machine learning Protein space Protein-ligand interactions Systems biology |
title_short |
Exploring Scoring Function Space: Developing Computational Models for Drug Discovery |
title_full |
Exploring Scoring Function Space: Developing Computational Models for Drug Discovery |
title_fullStr |
Exploring Scoring Function Space: Developing Computational Models for Drug Discovery |
title_full_unstemmed |
Exploring Scoring Function Space: Developing Computational Models for Drug Discovery |
title_sort |
Exploring Scoring Function Space: Developing Computational Models for Drug Discovery |
dc.creator.none.fl_str_mv |
Bitencourt Ferreira, Gabriela Villarreal, Marcos A. Quiroga, Rodrigo Biziukova, Nadezhda Poroikov, Vladimir Tarasova, Olga de Azevedo, Walter F. Jr. |
author |
Bitencourt Ferreira, Gabriela |
author_facet |
Bitencourt Ferreira, Gabriela Villarreal, Marcos A. Quiroga, Rodrigo Biziukova, Nadezhda Poroikov, Vladimir Tarasova, Olga de Azevedo, Walter F. Jr. |
author_role |
author |
author2 |
Villarreal, Marcos A. Quiroga, Rodrigo Biziukova, Nadezhda Poroikov, Vladimir Tarasova, Olga de Azevedo, Walter F. Jr. |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
https://orcid.org/0000-0002-3120-8256 https://orcid.org/0000-0001-8223-5193 https://orcid.org/0000-0001-5015-0531 https://orcid.org/0000-0002-2044-1327 https://orcid.org/0000-0001-7937-2621 https://orcid.org/0000-0002-3723-7832 https://orcid.org/0000-0001-8640-357X |
dc.subject.none.fl_str_mv |
Scoring function space Drug discovery Machine learning Protein space Protein-ligand interactions Systems biology |
topic |
Scoring function space Drug discovery Machine learning Protein space Protein-ligand interactions Systems biology |
dc.description.none.fl_txt_mv |
Impact Factor (IF) - 2023 (2024 update): 3.5 This article was made available online on 14 de junio de 2023 as a Fast Track article with title: "Exploring Scoring Function Space: Developing Computational Models for Drug Discovery". Fil: Bitencourt-Ferreira, Gabriela. Pontifical Catholic University of Rio Grande do Sul - PUCRS, Porto Alegre; Brazil. Fil: Villarreal, Marcos A. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Matemática y Física; Argentina. Fil: Villarreal, Marcos A. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina. Fil: Quiroga, Rodrigo. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Matemática y Física; Argentina. Fil: Quiroga, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina. Fil: Biziukova, Nadezhda. Institute of Biomedical Chemistry, Moscow; Russia. Fil: Poroikov, Vladimir. Institute of Biomedical Chemistry, Moscow; Russia. Fil: Tarasova, Olga. Institute of Biomedical Chemistry, Moscow; Russia. Fil: de Azevedo, Walter F. Jr. Pontifical Catholic University of Rio Grande do Sul - PUCRS, Porto Alegre; Brazil. Fil: de Azevedo, Walter F. Jr. The Pontifical Catholic University of Rio Grande do Sul. Specialization Program in Bioinformatics, Porto Alegre; Brazil. Background: The idea of scoring function space established a systems-level approach to address the development of models to predict the affinity of drug molecules by those interested in drug discovery. Objective: Our goal here is to review the concept of scoring function space and how to explore it to develop machine learning models to address protein-ligand binding affinity. Methods: We searched the articles available in PubMed related to the scoring function space. We also utilized crystallographic structures found in the protein data bank (PDB) to represent the protein space. Results: The application of systems-level approaches to address receptor-drug interactions allows us to have a holistic view of the process of drug discovery. The scoring function space adds flexibility to the process since it makes it possible to see drug discovery as a relationship involving mathematical spaces. Conclusion: The application of the concept of scoring function space has provided us with an integrated view of drug discovery methods. This concept is useful during drug discovery, where we see the process as a computational search of the scoring function space to find an adequate model to predict receptor-drug binding affinity. info:eu-repo/semantics/publishedVersion Fil: Bitencourt-Ferreira, Gabriela. Pontifical Catholic University of Rio Grande do Sul - PUCRS, Porto Alegre; Brazil. Fil: Villarreal, Marcos A. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Matemática y Física; Argentina. Fil: Villarreal, Marcos A. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina. Fil: Quiroga, Rodrigo. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Matemática y Física; Argentina. Fil: Quiroga, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina. Fil: Biziukova, Nadezhda. Institute of Biomedical Chemistry, Moscow; Russia. Fil: Poroikov, Vladimir. Institute of Biomedical Chemistry, Moscow; Russia. Fil: Tarasova, Olga. Institute of Biomedical Chemistry, Moscow; Russia. Fil: de Azevedo, Walter F. Jr. Pontifical Catholic University of Rio Grande do Sul - PUCRS, Porto Alegre; Brazil. Fil: de Azevedo, Walter F. Jr. The Pontifical Catholic University of Rio Grande do Sul. Specialization Program in Bioinformatics, Porto Alegre; Brazil. |
description |
Impact Factor (IF) - 2023 (2024 update): 3.5 This article was made available online on 14 de junio de 2023 as a Fast Track article with title: "Exploring Scoring Function Space: Developing Computational Models for Drug Discovery". |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-05-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
status_str |
publishedVersion |
format |
article |
dc.identifier.none.fl_str_mv |
Bitencourt-Ferreira, G., Villarreal, M. A., Quiroga, R., Biziukova, N., Poroikov, V., Tarasova, O., & de Azevedo Junior, W. F. (2024). Exploring Scoring Function Space: Developing Computational Models for Drug Discovery. Current Medicinal Chemistry, 31(17), 2361-2377. http://hdl.handle.net/11086/552745 1875-533X https://www.ingentaconnect.com/content/ben/cmc/2024/00000031/00000017/art00005 https://pubmed.ncbi.nlm.nih.gov/36944627/ http://doi.org/10.2174/0929867330666230321103731 |
identifier_str_mv |
Bitencourt-Ferreira, G., Villarreal, M. A., Quiroga, R., Biziukova, N., Poroikov, V., Tarasova, O., & de Azevedo Junior, W. F. (2024). Exploring Scoring Function Space: Developing Computational Models for Drug Discovery. Current Medicinal Chemistry, 31(17), 2361-2377. 1875-533X |
url |
http://hdl.handle.net/11086/552745 https://www.ingentaconnect.com/content/ben/cmc/2024/00000031/00000017/art00005 https://pubmed.ncbi.nlm.nih.gov/36944627/ http://doi.org/10.2174/0929867330666230321103731 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositorio Digital Universitario (UNC) instname:Universidad Nacional de Córdoba instacron:UNC |
reponame_str |
Repositorio Digital Universitario (UNC) |
collection |
Repositorio Digital Universitario (UNC) |
instname_str |
Universidad Nacional de Córdoba |
instacron_str |
UNC |
institution |
UNC |
repository.name.fl_str_mv |
Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdoba |
repository.mail.fl_str_mv |
oca.unc@gmail.com |
_version_ |
1844618960303030272 |
score |
13.070432 |