Pointwise estimate for the Hardy-Littlewood maximal operator on the orbits of contractive mappings
- Autores
- Aimar, Hugo Alejandro; Carena, Marilina
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let M n denote the Hardy-Littlewood maximal operator on the n-th iteration of a given iterated function system (IFS). We give sufficient conditions on the IFS in order to obtain a pointwise estimate for M n in terms of the composition of M 0 and a discrete Hardy-Littlewood type maximal operator. As a corollary we prove the uniform preservation of Muckenhoupt condition along the Hutchinson orbits induced by such an IFS.
Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Carena, Marilina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina - Materia
-
Hardy-Littlewood Maximal Operator
Iterated Function Systems
Hutchinson Orbits
Muckenhoupt Weights - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/84075
Ver los metadatos del registro completo
id |
CONICETDig_3eb3dfb3d1e648011c2ce9274b34e543 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/84075 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Pointwise estimate for the Hardy-Littlewood maximal operator on the orbits of contractive mappingsAimar, Hugo AlejandroCarena, MarilinaHardy-Littlewood Maximal OperatorIterated Function SystemsHutchinson OrbitsMuckenhoupt Weightshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let M n denote the Hardy-Littlewood maximal operator on the n-th iteration of a given iterated function system (IFS). We give sufficient conditions on the IFS in order to obtain a pointwise estimate for M n in terms of the composition of M 0 and a discrete Hardy-Littlewood type maximal operator. As a corollary we prove the uniform preservation of Muckenhoupt condition along the Hutchinson orbits induced by such an IFS.Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Carena, Marilina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaAcademic Press Inc Elsevier Science2012-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84075Aimar, Hugo Alejandro; Carena, Marilina; Pointwise estimate for the Hardy-Littlewood maximal operator on the orbits of contractive mappings; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 395; 2; 11-2012; 626-6360022-247XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2012.05.087info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:55Zoai:ri.conicet.gov.ar:11336/84075instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:55.534CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Pointwise estimate for the Hardy-Littlewood maximal operator on the orbits of contractive mappings |
title |
Pointwise estimate for the Hardy-Littlewood maximal operator on the orbits of contractive mappings |
spellingShingle |
Pointwise estimate for the Hardy-Littlewood maximal operator on the orbits of contractive mappings Aimar, Hugo Alejandro Hardy-Littlewood Maximal Operator Iterated Function Systems Hutchinson Orbits Muckenhoupt Weights |
title_short |
Pointwise estimate for the Hardy-Littlewood maximal operator on the orbits of contractive mappings |
title_full |
Pointwise estimate for the Hardy-Littlewood maximal operator on the orbits of contractive mappings |
title_fullStr |
Pointwise estimate for the Hardy-Littlewood maximal operator on the orbits of contractive mappings |
title_full_unstemmed |
Pointwise estimate for the Hardy-Littlewood maximal operator on the orbits of contractive mappings |
title_sort |
Pointwise estimate for the Hardy-Littlewood maximal operator on the orbits of contractive mappings |
dc.creator.none.fl_str_mv |
Aimar, Hugo Alejandro Carena, Marilina |
author |
Aimar, Hugo Alejandro |
author_facet |
Aimar, Hugo Alejandro Carena, Marilina |
author_role |
author |
author2 |
Carena, Marilina |
author2_role |
author |
dc.subject.none.fl_str_mv |
Hardy-Littlewood Maximal Operator Iterated Function Systems Hutchinson Orbits Muckenhoupt Weights |
topic |
Hardy-Littlewood Maximal Operator Iterated Function Systems Hutchinson Orbits Muckenhoupt Weights |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let M n denote the Hardy-Littlewood maximal operator on the n-th iteration of a given iterated function system (IFS). We give sufficient conditions on the IFS in order to obtain a pointwise estimate for M n in terms of the composition of M 0 and a discrete Hardy-Littlewood type maximal operator. As a corollary we prove the uniform preservation of Muckenhoupt condition along the Hutchinson orbits induced by such an IFS. Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Carena, Marilina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina |
description |
Let M n denote the Hardy-Littlewood maximal operator on the n-th iteration of a given iterated function system (IFS). We give sufficient conditions on the IFS in order to obtain a pointwise estimate for M n in terms of the composition of M 0 and a discrete Hardy-Littlewood type maximal operator. As a corollary we prove the uniform preservation of Muckenhoupt condition along the Hutchinson orbits induced by such an IFS. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/84075 Aimar, Hugo Alejandro; Carena, Marilina; Pointwise estimate for the Hardy-Littlewood maximal operator on the orbits of contractive mappings; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 395; 2; 11-2012; 626-636 0022-247X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/84075 |
identifier_str_mv |
Aimar, Hugo Alejandro; Carena, Marilina; Pointwise estimate for the Hardy-Littlewood maximal operator on the orbits of contractive mappings; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 395; 2; 11-2012; 626-636 0022-247X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2012.05.087 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269256840904704 |
score |
13.13397 |