Pointwise estimate for the Hardy-Littlewood maximal operator on the orbits of contractive mappings

Autores
Aimar, Hugo Alejandro; Carena, Marilina
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let M n denote the Hardy-Littlewood maximal operator on the n-th iteration of a given iterated function system (IFS). We give sufficient conditions on the IFS in order to obtain a pointwise estimate for M n in terms of the composition of M 0 and a discrete Hardy-Littlewood type maximal operator. As a corollary we prove the uniform preservation of Muckenhoupt condition along the Hutchinson orbits induced by such an IFS.
Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Carena, Marilina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Materia
Hardy-Littlewood Maximal Operator
Iterated Function Systems
Hutchinson Orbits
Muckenhoupt Weights
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/84075

id CONICETDig_3eb3dfb3d1e648011c2ce9274b34e543
oai_identifier_str oai:ri.conicet.gov.ar:11336/84075
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Pointwise estimate for the Hardy-Littlewood maximal operator on the orbits of contractive mappingsAimar, Hugo AlejandroCarena, MarilinaHardy-Littlewood Maximal OperatorIterated Function SystemsHutchinson OrbitsMuckenhoupt Weightshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let M n denote the Hardy-Littlewood maximal operator on the n-th iteration of a given iterated function system (IFS). We give sufficient conditions on the IFS in order to obtain a pointwise estimate for M n in terms of the composition of M 0 and a discrete Hardy-Littlewood type maximal operator. As a corollary we prove the uniform preservation of Muckenhoupt condition along the Hutchinson orbits induced by such an IFS.Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Carena, Marilina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaAcademic Press Inc Elsevier Science2012-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84075Aimar, Hugo Alejandro; Carena, Marilina; Pointwise estimate for the Hardy-Littlewood maximal operator on the orbits of contractive mappings; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 395; 2; 11-2012; 626-6360022-247XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2012.05.087info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:55Zoai:ri.conicet.gov.ar:11336/84075instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:55.534CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Pointwise estimate for the Hardy-Littlewood maximal operator on the orbits of contractive mappings
title Pointwise estimate for the Hardy-Littlewood maximal operator on the orbits of contractive mappings
spellingShingle Pointwise estimate for the Hardy-Littlewood maximal operator on the orbits of contractive mappings
Aimar, Hugo Alejandro
Hardy-Littlewood Maximal Operator
Iterated Function Systems
Hutchinson Orbits
Muckenhoupt Weights
title_short Pointwise estimate for the Hardy-Littlewood maximal operator on the orbits of contractive mappings
title_full Pointwise estimate for the Hardy-Littlewood maximal operator on the orbits of contractive mappings
title_fullStr Pointwise estimate for the Hardy-Littlewood maximal operator on the orbits of contractive mappings
title_full_unstemmed Pointwise estimate for the Hardy-Littlewood maximal operator on the orbits of contractive mappings
title_sort Pointwise estimate for the Hardy-Littlewood maximal operator on the orbits of contractive mappings
dc.creator.none.fl_str_mv Aimar, Hugo Alejandro
Carena, Marilina
author Aimar, Hugo Alejandro
author_facet Aimar, Hugo Alejandro
Carena, Marilina
author_role author
author2 Carena, Marilina
author2_role author
dc.subject.none.fl_str_mv Hardy-Littlewood Maximal Operator
Iterated Function Systems
Hutchinson Orbits
Muckenhoupt Weights
topic Hardy-Littlewood Maximal Operator
Iterated Function Systems
Hutchinson Orbits
Muckenhoupt Weights
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let M n denote the Hardy-Littlewood maximal operator on the n-th iteration of a given iterated function system (IFS). We give sufficient conditions on the IFS in order to obtain a pointwise estimate for M n in terms of the composition of M 0 and a discrete Hardy-Littlewood type maximal operator. As a corollary we prove the uniform preservation of Muckenhoupt condition along the Hutchinson orbits induced by such an IFS.
Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Carena, Marilina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
description Let M n denote the Hardy-Littlewood maximal operator on the n-th iteration of a given iterated function system (IFS). We give sufficient conditions on the IFS in order to obtain a pointwise estimate for M n in terms of the composition of M 0 and a discrete Hardy-Littlewood type maximal operator. As a corollary we prove the uniform preservation of Muckenhoupt condition along the Hutchinson orbits induced by such an IFS.
publishDate 2012
dc.date.none.fl_str_mv 2012-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/84075
Aimar, Hugo Alejandro; Carena, Marilina; Pointwise estimate for the Hardy-Littlewood maximal operator on the orbits of contractive mappings; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 395; 2; 11-2012; 626-636
0022-247X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/84075
identifier_str_mv Aimar, Hugo Alejandro; Carena, Marilina; Pointwise estimate for the Hardy-Littlewood maximal operator on the orbits of contractive mappings; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 395; 2; 11-2012; 626-636
0022-247X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2012.05.087
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269256840904704
score 13.13397