A Note on the Well-Posedness of Control Complex Ginzburg-Landau Equations in Zhidkov Spaces

Autores
Besteiro, Agustin Tomas
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this note, we consider the Complex Ginzburg-Landau equations with a bilinear controlterm in the real line. We prove well-posedness results concerned with the initial value problem for theseequations in Zhidkov spaces using splitting methods.
Fil: Besteiro, Agustin Tomas. Universidad Abierta Interamericana. Facultad de Tecnología Informatica. Departamento de Sistemas de Computación. Cent.de Altos Estudios En Tecnología Informatica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
WELL-POSEDNESS
ZHIDKOV SPACES
LIE TROTTER METHOD
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/200574

id CONICETDig_4269690677f8913076c9f0d383774d67
oai_identifier_str oai:ri.conicet.gov.ar:11336/200574
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A Note on the Well-Posedness of Control Complex Ginzburg-Landau Equations in Zhidkov SpacesBesteiro, Agustin TomasWELL-POSEDNESSZHIDKOV SPACESLIE TROTTER METHODhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this note, we consider the Complex Ginzburg-Landau equations with a bilinear controlterm in the real line. We prove well-posedness results concerned with the initial value problem for theseequations in Zhidkov spaces using splitting methods.Fil: Besteiro, Agustin Tomas. Universidad Abierta Interamericana. Facultad de Tecnología Informatica. Departamento de Sistemas de Computación. Cent.de Altos Estudios En Tecnología Informatica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSociedade Brasileira de Matemática Aplicada e Computacional2022-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/200574Besteiro, Agustin Tomas; A Note on the Well-Posedness of Control Complex Ginzburg-Landau Equations in Zhidkov Spaces; Sociedade Brasileira de Matemática Aplicada e Computacional; Trends in Computational and Applied Mathematics; 23; 3; 9-2022; 539-5472676-00292676-0029CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://tema.sbmac.org.br/tema/article/view/1617info:eu-repo/semantics/altIdentifier/doi/10.5540/tcam.2022.023.03.00539info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:29Zoai:ri.conicet.gov.ar:11336/200574instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:29.41CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A Note on the Well-Posedness of Control Complex Ginzburg-Landau Equations in Zhidkov Spaces
title A Note on the Well-Posedness of Control Complex Ginzburg-Landau Equations in Zhidkov Spaces
spellingShingle A Note on the Well-Posedness of Control Complex Ginzburg-Landau Equations in Zhidkov Spaces
Besteiro, Agustin Tomas
WELL-POSEDNESS
ZHIDKOV SPACES
LIE TROTTER METHOD
title_short A Note on the Well-Posedness of Control Complex Ginzburg-Landau Equations in Zhidkov Spaces
title_full A Note on the Well-Posedness of Control Complex Ginzburg-Landau Equations in Zhidkov Spaces
title_fullStr A Note on the Well-Posedness of Control Complex Ginzburg-Landau Equations in Zhidkov Spaces
title_full_unstemmed A Note on the Well-Posedness of Control Complex Ginzburg-Landau Equations in Zhidkov Spaces
title_sort A Note on the Well-Posedness of Control Complex Ginzburg-Landau Equations in Zhidkov Spaces
dc.creator.none.fl_str_mv Besteiro, Agustin Tomas
author Besteiro, Agustin Tomas
author_facet Besteiro, Agustin Tomas
author_role author
dc.subject.none.fl_str_mv WELL-POSEDNESS
ZHIDKOV SPACES
LIE TROTTER METHOD
topic WELL-POSEDNESS
ZHIDKOV SPACES
LIE TROTTER METHOD
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this note, we consider the Complex Ginzburg-Landau equations with a bilinear controlterm in the real line. We prove well-posedness results concerned with the initial value problem for theseequations in Zhidkov spaces using splitting methods.
Fil: Besteiro, Agustin Tomas. Universidad Abierta Interamericana. Facultad de Tecnología Informatica. Departamento de Sistemas de Computación. Cent.de Altos Estudios En Tecnología Informatica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description In this note, we consider the Complex Ginzburg-Landau equations with a bilinear controlterm in the real line. We prove well-posedness results concerned with the initial value problem for theseequations in Zhidkov spaces using splitting methods.
publishDate 2022
dc.date.none.fl_str_mv 2022-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/200574
Besteiro, Agustin Tomas; A Note on the Well-Posedness of Control Complex Ginzburg-Landau Equations in Zhidkov Spaces; Sociedade Brasileira de Matemática Aplicada e Computacional; Trends in Computational and Applied Mathematics; 23; 3; 9-2022; 539-547
2676-0029
2676-0029
CONICET Digital
CONICET
url http://hdl.handle.net/11336/200574
identifier_str_mv Besteiro, Agustin Tomas; A Note on the Well-Posedness of Control Complex Ginzburg-Landau Equations in Zhidkov Spaces; Sociedade Brasileira de Matemática Aplicada e Computacional; Trends in Computational and Applied Mathematics; 23; 3; 9-2022; 539-547
2676-0029
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://tema.sbmac.org.br/tema/article/view/1617
info:eu-repo/semantics/altIdentifier/doi/10.5540/tcam.2022.023.03.00539
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269162376790016
score 13.13397