Polynomial Complex Ginzburg-Landau equations in Almost periodic spaces
- Autores
- Besteiro, Agustin Tomas
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider complex Ginzburg-Landau equations with a polynomial non-linearity in the real line. We use splitting-methods to prove well-posedness for a subset of almost periodic spaces. Specifically, we prove that if the initial condition has multiples of an irrational phase, then the solution of the equation maintains those same phases.
Fil: Besteiro, Agustin Tomas. Universidad Abierta Interamericana. Facultad de Tecnología Informatica. Departamento de Sistemas de Computación. Cent.de Altos Estudios En Tecnología Informatica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
ALMOST PERIODIC SPACES
LIE–TROTTER METHOD
WELL-POSEDNESS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/219250
Ver los metadatos del registro completo
id |
CONICETDig_c7a7b4c570db8bcf492f90f1a66451f7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/219250 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Polynomial Complex Ginzburg-Landau equations in Almost periodic spacesBesteiro, Agustin TomasALMOST PERIODIC SPACESLIE–TROTTER METHODWELL-POSEDNESShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider complex Ginzburg-Landau equations with a polynomial non-linearity in the real line. We use splitting-methods to prove well-posedness for a subset of almost periodic spaces. Specifically, we prove that if the initial condition has multiples of an irrational phase, then the solution of the equation maintains those same phases.Fil: Besteiro, Agustin Tomas. Universidad Abierta Interamericana. Facultad de Tecnología Informatica. Departamento de Sistemas de Computación. Cent.de Altos Estudios En Tecnología Informatica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaEpisciences2023-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/219250Besteiro, Agustin Tomas; Polynomial Complex Ginzburg-Landau equations in Almost periodic spaces; Episciences; Communications in Mathematics; 31; 1; 1-2023; 91-1011804-13882336-1298CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://cm.episciences.org/10279info:eu-repo/semantics/altIdentifier/doi/10.46298/cm.10279info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:00:29Zoai:ri.conicet.gov.ar:11336/219250instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:00:29.531CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Polynomial Complex Ginzburg-Landau equations in Almost periodic spaces |
title |
Polynomial Complex Ginzburg-Landau equations in Almost periodic spaces |
spellingShingle |
Polynomial Complex Ginzburg-Landau equations in Almost periodic spaces Besteiro, Agustin Tomas ALMOST PERIODIC SPACES LIE–TROTTER METHOD WELL-POSEDNESS |
title_short |
Polynomial Complex Ginzburg-Landau equations in Almost periodic spaces |
title_full |
Polynomial Complex Ginzburg-Landau equations in Almost periodic spaces |
title_fullStr |
Polynomial Complex Ginzburg-Landau equations in Almost periodic spaces |
title_full_unstemmed |
Polynomial Complex Ginzburg-Landau equations in Almost periodic spaces |
title_sort |
Polynomial Complex Ginzburg-Landau equations in Almost periodic spaces |
dc.creator.none.fl_str_mv |
Besteiro, Agustin Tomas |
author |
Besteiro, Agustin Tomas |
author_facet |
Besteiro, Agustin Tomas |
author_role |
author |
dc.subject.none.fl_str_mv |
ALMOST PERIODIC SPACES LIE–TROTTER METHOD WELL-POSEDNESS |
topic |
ALMOST PERIODIC SPACES LIE–TROTTER METHOD WELL-POSEDNESS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We consider complex Ginzburg-Landau equations with a polynomial non-linearity in the real line. We use splitting-methods to prove well-posedness for a subset of almost periodic spaces. Specifically, we prove that if the initial condition has multiples of an irrational phase, then the solution of the equation maintains those same phases. Fil: Besteiro, Agustin Tomas. Universidad Abierta Interamericana. Facultad de Tecnología Informatica. Departamento de Sistemas de Computación. Cent.de Altos Estudios En Tecnología Informatica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We consider complex Ginzburg-Landau equations with a polynomial non-linearity in the real line. We use splitting-methods to prove well-posedness for a subset of almost periodic spaces. Specifically, we prove that if the initial condition has multiples of an irrational phase, then the solution of the equation maintains those same phases. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/219250 Besteiro, Agustin Tomas; Polynomial Complex Ginzburg-Landau equations in Almost periodic spaces; Episciences; Communications in Mathematics; 31; 1; 1-2023; 91-101 1804-1388 2336-1298 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/219250 |
identifier_str_mv |
Besteiro, Agustin Tomas; Polynomial Complex Ginzburg-Landau equations in Almost periodic spaces; Episciences; Communications in Mathematics; 31; 1; 1-2023; 91-101 1804-1388 2336-1298 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://cm.episciences.org/10279 info:eu-repo/semantics/altIdentifier/doi/10.46298/cm.10279 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Episciences |
publisher.none.fl_str_mv |
Episciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269640832581632 |
score |
13.13397 |