Polynomial Complex Ginzburg-Landau equations in Almost periodic spaces

Autores
Besteiro, Agustin Tomas
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We consider complex Ginzburg-Landau equations with a polynomial non-linearity in the real line. We use splitting-methods to prove well-posedness for a subset of almost periodic spaces. Specifically, we prove that if the initial condition has multiples of an irrational phase, then the solution of the equation maintains those same phases.
Fil: Besteiro, Agustin Tomas. Universidad Abierta Interamericana. Facultad de Tecnología Informatica. Departamento de Sistemas de Computación. Cent.de Altos Estudios En Tecnología Informatica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
ALMOST PERIODIC SPACES
LIE–TROTTER METHOD
WELL-POSEDNESS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/219250

id CONICETDig_c7a7b4c570db8bcf492f90f1a66451f7
oai_identifier_str oai:ri.conicet.gov.ar:11336/219250
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Polynomial Complex Ginzburg-Landau equations in Almost periodic spacesBesteiro, Agustin TomasALMOST PERIODIC SPACESLIE–TROTTER METHODWELL-POSEDNESShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider complex Ginzburg-Landau equations with a polynomial non-linearity in the real line. We use splitting-methods to prove well-posedness for a subset of almost periodic spaces. Specifically, we prove that if the initial condition has multiples of an irrational phase, then the solution of the equation maintains those same phases.Fil: Besteiro, Agustin Tomas. Universidad Abierta Interamericana. Facultad de Tecnología Informatica. Departamento de Sistemas de Computación. Cent.de Altos Estudios En Tecnología Informatica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaEpisciences2023-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/219250Besteiro, Agustin Tomas; Polynomial Complex Ginzburg-Landau equations in Almost periodic spaces; Episciences; Communications in Mathematics; 31; 1; 1-2023; 91-1011804-13882336-1298CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://cm.episciences.org/10279info:eu-repo/semantics/altIdentifier/doi/10.46298/cm.10279info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:00:29Zoai:ri.conicet.gov.ar:11336/219250instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:00:29.531CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Polynomial Complex Ginzburg-Landau equations in Almost periodic spaces
title Polynomial Complex Ginzburg-Landau equations in Almost periodic spaces
spellingShingle Polynomial Complex Ginzburg-Landau equations in Almost periodic spaces
Besteiro, Agustin Tomas
ALMOST PERIODIC SPACES
LIE–TROTTER METHOD
WELL-POSEDNESS
title_short Polynomial Complex Ginzburg-Landau equations in Almost periodic spaces
title_full Polynomial Complex Ginzburg-Landau equations in Almost periodic spaces
title_fullStr Polynomial Complex Ginzburg-Landau equations in Almost periodic spaces
title_full_unstemmed Polynomial Complex Ginzburg-Landau equations in Almost periodic spaces
title_sort Polynomial Complex Ginzburg-Landau equations in Almost periodic spaces
dc.creator.none.fl_str_mv Besteiro, Agustin Tomas
author Besteiro, Agustin Tomas
author_facet Besteiro, Agustin Tomas
author_role author
dc.subject.none.fl_str_mv ALMOST PERIODIC SPACES
LIE–TROTTER METHOD
WELL-POSEDNESS
topic ALMOST PERIODIC SPACES
LIE–TROTTER METHOD
WELL-POSEDNESS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We consider complex Ginzburg-Landau equations with a polynomial non-linearity in the real line. We use splitting-methods to prove well-posedness for a subset of almost periodic spaces. Specifically, we prove that if the initial condition has multiples of an irrational phase, then the solution of the equation maintains those same phases.
Fil: Besteiro, Agustin Tomas. Universidad Abierta Interamericana. Facultad de Tecnología Informatica. Departamento de Sistemas de Computación. Cent.de Altos Estudios En Tecnología Informatica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description We consider complex Ginzburg-Landau equations with a polynomial non-linearity in the real line. We use splitting-methods to prove well-posedness for a subset of almost periodic spaces. Specifically, we prove that if the initial condition has multiples of an irrational phase, then the solution of the equation maintains those same phases.
publishDate 2023
dc.date.none.fl_str_mv 2023-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/219250
Besteiro, Agustin Tomas; Polynomial Complex Ginzburg-Landau equations in Almost periodic spaces; Episciences; Communications in Mathematics; 31; 1; 1-2023; 91-101
1804-1388
2336-1298
CONICET Digital
CONICET
url http://hdl.handle.net/11336/219250
identifier_str_mv Besteiro, Agustin Tomas; Polynomial Complex Ginzburg-Landau equations in Almost periodic spaces; Episciences; Communications in Mathematics; 31; 1; 1-2023; 91-101
1804-1388
2336-1298
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://cm.episciences.org/10279
info:eu-repo/semantics/altIdentifier/doi/10.46298/cm.10279
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Episciences
publisher.none.fl_str_mv Episciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269640832581632
score 13.13397