Convergence Criteria for Fixed Point Problems and Differential Equations
- Autores
- Sofonea, Mircea; Tarzia, Domingo Alberto
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider a Cauchy problem for differential equations in a Hilbert space X. The problem is stated in a time interval I, which can be finite or infinite. We use a fixed point argument for history-dependent operators to prove the unique solvability of the problem. Then, we establish convergence criteria for both a general fixed point problem and the corresponding Cauchy problem. These criteria provide the necessary and sufficient conditions on a sequence (Formula presented.), which guarantee its convergence to the solution of the corresponding problem, in the space of both continuous and continuously differentiable functions. We then specify our results in the study of a particular differential equation governed by two nonlinear operators. Finally, we provide an application in viscoelasticity and give a mechanical interpretation of the corresponding convergence result.
Fil: Sofonea, Mircea. Université de Perpignan Via Domitia; Francia
Fil: Tarzia, Domingo Alberto. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
CAUCHY PROBLEM
CONVERGENCE CRITERION
DIFFERENTIAL EQUATION
FIXED POINT
HISTORY-DEPENDENT OPERATOR
VISCOELASTIC CONSTITUTIVE LAW - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/230908
Ver los metadatos del registro completo
id |
CONICETDig_ac6c471b83382590d5761bcfae212f79 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/230908 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Convergence Criteria for Fixed Point Problems and Differential EquationsSofonea, MirceaTarzia, Domingo AlbertoCAUCHY PROBLEMCONVERGENCE CRITERIONDIFFERENTIAL EQUATIONFIXED POINTHISTORY-DEPENDENT OPERATORVISCOELASTIC CONSTITUTIVE LAWhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider a Cauchy problem for differential equations in a Hilbert space X. The problem is stated in a time interval I, which can be finite or infinite. We use a fixed point argument for history-dependent operators to prove the unique solvability of the problem. Then, we establish convergence criteria for both a general fixed point problem and the corresponding Cauchy problem. These criteria provide the necessary and sufficient conditions on a sequence (Formula presented.), which guarantee its convergence to the solution of the corresponding problem, in the space of both continuous and continuously differentiable functions. We then specify our results in the study of a particular differential equation governed by two nonlinear operators. Finally, we provide an application in viscoelasticity and give a mechanical interpretation of the corresponding convergence result.Fil: Sofonea, Mircea. Université de Perpignan Via Domitia; FranciaFil: Tarzia, Domingo Alberto. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaMDPI2024-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/230908Sofonea, Mircea; Tarzia, Domingo Alberto; Convergence Criteria for Fixed Point Problems and Differential Equations; MDPI; Mathematics; 12; 3; 2-2024; 1-192227-7390CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3390/math12030395info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:03Zoai:ri.conicet.gov.ar:11336/230908instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:03.856CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Convergence Criteria for Fixed Point Problems and Differential Equations |
title |
Convergence Criteria for Fixed Point Problems and Differential Equations |
spellingShingle |
Convergence Criteria for Fixed Point Problems and Differential Equations Sofonea, Mircea CAUCHY PROBLEM CONVERGENCE CRITERION DIFFERENTIAL EQUATION FIXED POINT HISTORY-DEPENDENT OPERATOR VISCOELASTIC CONSTITUTIVE LAW |
title_short |
Convergence Criteria for Fixed Point Problems and Differential Equations |
title_full |
Convergence Criteria for Fixed Point Problems and Differential Equations |
title_fullStr |
Convergence Criteria for Fixed Point Problems and Differential Equations |
title_full_unstemmed |
Convergence Criteria for Fixed Point Problems and Differential Equations |
title_sort |
Convergence Criteria for Fixed Point Problems and Differential Equations |
dc.creator.none.fl_str_mv |
Sofonea, Mircea Tarzia, Domingo Alberto |
author |
Sofonea, Mircea |
author_facet |
Sofonea, Mircea Tarzia, Domingo Alberto |
author_role |
author |
author2 |
Tarzia, Domingo Alberto |
author2_role |
author |
dc.subject.none.fl_str_mv |
CAUCHY PROBLEM CONVERGENCE CRITERION DIFFERENTIAL EQUATION FIXED POINT HISTORY-DEPENDENT OPERATOR VISCOELASTIC CONSTITUTIVE LAW |
topic |
CAUCHY PROBLEM CONVERGENCE CRITERION DIFFERENTIAL EQUATION FIXED POINT HISTORY-DEPENDENT OPERATOR VISCOELASTIC CONSTITUTIVE LAW |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We consider a Cauchy problem for differential equations in a Hilbert space X. The problem is stated in a time interval I, which can be finite or infinite. We use a fixed point argument for history-dependent operators to prove the unique solvability of the problem. Then, we establish convergence criteria for both a general fixed point problem and the corresponding Cauchy problem. These criteria provide the necessary and sufficient conditions on a sequence (Formula presented.), which guarantee its convergence to the solution of the corresponding problem, in the space of both continuous and continuously differentiable functions. We then specify our results in the study of a particular differential equation governed by two nonlinear operators. Finally, we provide an application in viscoelasticity and give a mechanical interpretation of the corresponding convergence result. Fil: Sofonea, Mircea. Université de Perpignan Via Domitia; Francia Fil: Tarzia, Domingo Alberto. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We consider a Cauchy problem for differential equations in a Hilbert space X. The problem is stated in a time interval I, which can be finite or infinite. We use a fixed point argument for history-dependent operators to prove the unique solvability of the problem. Then, we establish convergence criteria for both a general fixed point problem and the corresponding Cauchy problem. These criteria provide the necessary and sufficient conditions on a sequence (Formula presented.), which guarantee its convergence to the solution of the corresponding problem, in the space of both continuous and continuously differentiable functions. We then specify our results in the study of a particular differential equation governed by two nonlinear operators. Finally, we provide an application in viscoelasticity and give a mechanical interpretation of the corresponding convergence result. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/230908 Sofonea, Mircea; Tarzia, Domingo Alberto; Convergence Criteria for Fixed Point Problems and Differential Equations; MDPI; Mathematics; 12; 3; 2-2024; 1-19 2227-7390 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/230908 |
identifier_str_mv |
Sofonea, Mircea; Tarzia, Domingo Alberto; Convergence Criteria for Fixed Point Problems and Differential Equations; MDPI; Mathematics; 12; 3; 2-2024; 1-19 2227-7390 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.3390/math12030395 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268834216542208 |
score |
13.13397 |