A fixed point operator for a nonlinear boundary value problem

Autores
Amster, P.; Mariani, M.C.
Año de publicación
2002
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study a semilinear second order equation with a nonlinear boundary condition for the axial deformation of a nonlinear elastic beam in the presence of friction. Under appropriate conditions we define a fixed point operator in order to obtain solutions for this equation. ©c 2002 Elsevier Science.
Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Mariani, M.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Math. Anal. Appl. 2002;266(1):160-168
Materia
Fixed point methods
Nonlinear BVP
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_0022247X_v266_n1_p160_Amster

id BDUBAFCEN_67eb2cb3613a10a685500cc3fdc1613e
oai_identifier_str paperaa:paper_0022247X_v266_n1_p160_Amster
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling A fixed point operator for a nonlinear boundary value problemAmster, P.Mariani, M.C.Fixed point methodsNonlinear BVPWe study a semilinear second order equation with a nonlinear boundary condition for the axial deformation of a nonlinear elastic beam in the presence of friction. Under appropriate conditions we define a fixed point operator in order to obtain solutions for this equation. ©c 2002 Elsevier Science.Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Mariani, M.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2002info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0022247X_v266_n1_p160_AmsterJ. Math. Anal. Appl. 2002;266(1):160-168reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:26Zpaperaa:paper_0022247X_v266_n1_p160_AmsterInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:28.148Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv A fixed point operator for a nonlinear boundary value problem
title A fixed point operator for a nonlinear boundary value problem
spellingShingle A fixed point operator for a nonlinear boundary value problem
Amster, P.
Fixed point methods
Nonlinear BVP
title_short A fixed point operator for a nonlinear boundary value problem
title_full A fixed point operator for a nonlinear boundary value problem
title_fullStr A fixed point operator for a nonlinear boundary value problem
title_full_unstemmed A fixed point operator for a nonlinear boundary value problem
title_sort A fixed point operator for a nonlinear boundary value problem
dc.creator.none.fl_str_mv Amster, P.
Mariani, M.C.
author Amster, P.
author_facet Amster, P.
Mariani, M.C.
author_role author
author2 Mariani, M.C.
author2_role author
dc.subject.none.fl_str_mv Fixed point methods
Nonlinear BVP
topic Fixed point methods
Nonlinear BVP
dc.description.none.fl_txt_mv We study a semilinear second order equation with a nonlinear boundary condition for the axial deformation of a nonlinear elastic beam in the presence of friction. Under appropriate conditions we define a fixed point operator in order to obtain solutions for this equation. ©c 2002 Elsevier Science.
Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Mariani, M.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description We study a semilinear second order equation with a nonlinear boundary condition for the axial deformation of a nonlinear elastic beam in the presence of friction. Under appropriate conditions we define a fixed point operator in order to obtain solutions for this equation. ©c 2002 Elsevier Science.
publishDate 2002
dc.date.none.fl_str_mv 2002
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_0022247X_v266_n1_p160_Amster
url http://hdl.handle.net/20.500.12110/paper_0022247X_v266_n1_p160_Amster
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Math. Anal. Appl. 2002;266(1):160-168
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1842340702596366336
score 12.623145