A fixed point operator for a nonlinear boundary value problem
- Autores
- Amster, P.; Mariani, M.C.
- Año de publicación
- 2002
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study a semilinear second order equation with a nonlinear boundary condition for the axial deformation of a nonlinear elastic beam in the presence of friction. Under appropriate conditions we define a fixed point operator in order to obtain solutions for this equation. ©c 2002 Elsevier Science.
Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Mariani, M.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Math. Anal. Appl. 2002;266(1):160-168
- Materia
-
Fixed point methods
Nonlinear BVP - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_0022247X_v266_n1_p160_Amster
Ver los metadatos del registro completo
id |
BDUBAFCEN_67eb2cb3613a10a685500cc3fdc1613e |
---|---|
oai_identifier_str |
paperaa:paper_0022247X_v266_n1_p160_Amster |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
A fixed point operator for a nonlinear boundary value problemAmster, P.Mariani, M.C.Fixed point methodsNonlinear BVPWe study a semilinear second order equation with a nonlinear boundary condition for the axial deformation of a nonlinear elastic beam in the presence of friction. Under appropriate conditions we define a fixed point operator in order to obtain solutions for this equation. ©c 2002 Elsevier Science.Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Mariani, M.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2002info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0022247X_v266_n1_p160_AmsterJ. Math. Anal. Appl. 2002;266(1):160-168reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:26Zpaperaa:paper_0022247X_v266_n1_p160_AmsterInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:28.148Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
A fixed point operator for a nonlinear boundary value problem |
title |
A fixed point operator for a nonlinear boundary value problem |
spellingShingle |
A fixed point operator for a nonlinear boundary value problem Amster, P. Fixed point methods Nonlinear BVP |
title_short |
A fixed point operator for a nonlinear boundary value problem |
title_full |
A fixed point operator for a nonlinear boundary value problem |
title_fullStr |
A fixed point operator for a nonlinear boundary value problem |
title_full_unstemmed |
A fixed point operator for a nonlinear boundary value problem |
title_sort |
A fixed point operator for a nonlinear boundary value problem |
dc.creator.none.fl_str_mv |
Amster, P. Mariani, M.C. |
author |
Amster, P. |
author_facet |
Amster, P. Mariani, M.C. |
author_role |
author |
author2 |
Mariani, M.C. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Fixed point methods Nonlinear BVP |
topic |
Fixed point methods Nonlinear BVP |
dc.description.none.fl_txt_mv |
We study a semilinear second order equation with a nonlinear boundary condition for the axial deformation of a nonlinear elastic beam in the presence of friction. Under appropriate conditions we define a fixed point operator in order to obtain solutions for this equation. ©c 2002 Elsevier Science. Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Mariani, M.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
We study a semilinear second order equation with a nonlinear boundary condition for the axial deformation of a nonlinear elastic beam in the presence of friction. Under appropriate conditions we define a fixed point operator in order to obtain solutions for this equation. ©c 2002 Elsevier Science. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_0022247X_v266_n1_p160_Amster |
url |
http://hdl.handle.net/20.500.12110/paper_0022247X_v266_n1_p160_Amster |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
J. Math. Anal. Appl. 2002;266(1):160-168 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1842340702596366336 |
score |
12.623145 |