Inequalities in Lp−1 for the extended Lp best approximation operator
- Autores
- Cuenya, H.; Favier, Sergio José; Zo, Felipe
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The best polynomial approximation operator was recently extended by one of the authors from Lp to Lp−1. In this paper, we study weak and strong inequalities for maximal operators related with the extended best polynomial approximation operator. As an application, we obtain norm convergence of the coefficients of the best polynomial approximation.
Fil: Cuenya, H.. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina
Fil: Favier, Sergio José. Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Matemática Aplicada de San Luis; Argentina
Fil: Zo, Felipe. Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Matemática Aplicada de San Luis; Argentina - Materia
-
Best Approximation
Extended Of the Best Approximation Operator
Peano Derivatives in Lp
Maximal Functions Associated To the Best Approximation Operator
Maximal Inequalities - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/15413
Ver los metadatos del registro completo
id |
CONICETDig_ab6c7fa8fc487e374a6cd02a4bb19f65 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/15413 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Inequalities in Lp−1 for the extended Lp best approximation operatorCuenya, H.Favier, Sergio JoséZo, FelipeBest ApproximationExtended Of the Best Approximation OperatorPeano Derivatives in LpMaximal Functions Associated To the Best Approximation OperatorMaximal Inequalitieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The best polynomial approximation operator was recently extended by one of the authors from Lp to Lp−1. In this paper, we study weak and strong inequalities for maximal operators related with the extended best polynomial approximation operator. As an application, we obtain norm convergence of the coefficients of the best polynomial approximation.Fil: Cuenya, H.. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; ArgentinaFil: Favier, Sergio José. Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Matemática Aplicada de San Luis; ArgentinaFil: Zo, Felipe. Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Matemática Aplicada de San Luis; ArgentinaElsevier Inc2012-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15413Cuenya, H.; Favier, Sergio José; Zo, Felipe; Inequalities in Lp−1 for the extended Lp best approximation operator; Elsevier Inc; Journal Of Mathematical Analysis And Applications; 393; 1; 9-2012; 80-880022-247Xenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2012.02.067info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X12002247info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:10:29Zoai:ri.conicet.gov.ar:11336/15413instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:10:29.792CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Inequalities in Lp−1 for the extended Lp best approximation operator |
title |
Inequalities in Lp−1 for the extended Lp best approximation operator |
spellingShingle |
Inequalities in Lp−1 for the extended Lp best approximation operator Cuenya, H. Best Approximation Extended Of the Best Approximation Operator Peano Derivatives in Lp Maximal Functions Associated To the Best Approximation Operator Maximal Inequalities |
title_short |
Inequalities in Lp−1 for the extended Lp best approximation operator |
title_full |
Inequalities in Lp−1 for the extended Lp best approximation operator |
title_fullStr |
Inequalities in Lp−1 for the extended Lp best approximation operator |
title_full_unstemmed |
Inequalities in Lp−1 for the extended Lp best approximation operator |
title_sort |
Inequalities in Lp−1 for the extended Lp best approximation operator |
dc.creator.none.fl_str_mv |
Cuenya, H. Favier, Sergio José Zo, Felipe |
author |
Cuenya, H. |
author_facet |
Cuenya, H. Favier, Sergio José Zo, Felipe |
author_role |
author |
author2 |
Favier, Sergio José Zo, Felipe |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Best Approximation Extended Of the Best Approximation Operator Peano Derivatives in Lp Maximal Functions Associated To the Best Approximation Operator Maximal Inequalities |
topic |
Best Approximation Extended Of the Best Approximation Operator Peano Derivatives in Lp Maximal Functions Associated To the Best Approximation Operator Maximal Inequalities |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The best polynomial approximation operator was recently extended by one of the authors from Lp to Lp−1. In this paper, we study weak and strong inequalities for maximal operators related with the extended best polynomial approximation operator. As an application, we obtain norm convergence of the coefficients of the best polynomial approximation. Fil: Cuenya, H.. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina Fil: Favier, Sergio José. Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Matemática Aplicada de San Luis; Argentina Fil: Zo, Felipe. Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Matemática Aplicada de San Luis; Argentina |
description |
The best polynomial approximation operator was recently extended by one of the authors from Lp to Lp−1. In this paper, we study weak and strong inequalities for maximal operators related with the extended best polynomial approximation operator. As an application, we obtain norm convergence of the coefficients of the best polynomial approximation. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/15413 Cuenya, H.; Favier, Sergio José; Zo, Felipe; Inequalities in Lp−1 for the extended Lp best approximation operator; Elsevier Inc; Journal Of Mathematical Analysis And Applications; 393; 1; 9-2012; 80-88 0022-247X |
url |
http://hdl.handle.net/11336/15413 |
identifier_str_mv |
Cuenya, H.; Favier, Sergio José; Zo, Felipe; Inequalities in Lp−1 for the extended Lp best approximation operator; Elsevier Inc; Journal Of Mathematical Analysis And Applications; 393; 1; 9-2012; 80-88 0022-247X |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2012.02.067 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X12002247 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Inc |
publisher.none.fl_str_mv |
Elsevier Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270121830121472 |
score |
13.13397 |