Inequalities in Lp−1 for the extended Lp best approximation operator

Autores
Cuenya, H.; Favier, Sergio José; Zo, Felipe
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The best polynomial approximation operator was recently extended by one of the authors from Lp to Lp−1. In this paper, we study weak and strong inequalities for maximal operators related with the extended best polynomial approximation operator. As an application, we obtain norm convergence of the coefficients of the best polynomial approximation.
Fil: Cuenya, H.. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina
Fil: Favier, Sergio José. Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Matemática Aplicada de San Luis; Argentina
Fil: Zo, Felipe. Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Matemática Aplicada de San Luis; Argentina
Materia
Best Approximation
Extended Of the Best Approximation Operator
Peano Derivatives in Lp
Maximal Functions Associated To the Best Approximation Operator
Maximal Inequalities
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/15413

id CONICETDig_ab6c7fa8fc487e374a6cd02a4bb19f65
oai_identifier_str oai:ri.conicet.gov.ar:11336/15413
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Inequalities in Lp−1 for the extended Lp best approximation operatorCuenya, H.Favier, Sergio JoséZo, FelipeBest ApproximationExtended Of the Best Approximation OperatorPeano Derivatives in LpMaximal Functions Associated To the Best Approximation OperatorMaximal Inequalitieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The best polynomial approximation operator was recently extended by one of the authors from Lp to Lp−1. In this paper, we study weak and strong inequalities for maximal operators related with the extended best polynomial approximation operator. As an application, we obtain norm convergence of the coefficients of the best polynomial approximation.Fil: Cuenya, H.. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; ArgentinaFil: Favier, Sergio José. Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Matemática Aplicada de San Luis; ArgentinaFil: Zo, Felipe. Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Matemática Aplicada de San Luis; ArgentinaElsevier Inc2012-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15413Cuenya, H.; Favier, Sergio José; Zo, Felipe; Inequalities in Lp−1 for the extended Lp best approximation operator; Elsevier Inc; Journal Of Mathematical Analysis And Applications; 393; 1; 9-2012; 80-880022-247Xenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2012.02.067info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X12002247info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:10:29Zoai:ri.conicet.gov.ar:11336/15413instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:10:29.792CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Inequalities in Lp−1 for the extended Lp best approximation operator
title Inequalities in Lp−1 for the extended Lp best approximation operator
spellingShingle Inequalities in Lp−1 for the extended Lp best approximation operator
Cuenya, H.
Best Approximation
Extended Of the Best Approximation Operator
Peano Derivatives in Lp
Maximal Functions Associated To the Best Approximation Operator
Maximal Inequalities
title_short Inequalities in Lp−1 for the extended Lp best approximation operator
title_full Inequalities in Lp−1 for the extended Lp best approximation operator
title_fullStr Inequalities in Lp−1 for the extended Lp best approximation operator
title_full_unstemmed Inequalities in Lp−1 for the extended Lp best approximation operator
title_sort Inequalities in Lp−1 for the extended Lp best approximation operator
dc.creator.none.fl_str_mv Cuenya, H.
Favier, Sergio José
Zo, Felipe
author Cuenya, H.
author_facet Cuenya, H.
Favier, Sergio José
Zo, Felipe
author_role author
author2 Favier, Sergio José
Zo, Felipe
author2_role author
author
dc.subject.none.fl_str_mv Best Approximation
Extended Of the Best Approximation Operator
Peano Derivatives in Lp
Maximal Functions Associated To the Best Approximation Operator
Maximal Inequalities
topic Best Approximation
Extended Of the Best Approximation Operator
Peano Derivatives in Lp
Maximal Functions Associated To the Best Approximation Operator
Maximal Inequalities
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The best polynomial approximation operator was recently extended by one of the authors from Lp to Lp−1. In this paper, we study weak and strong inequalities for maximal operators related with the extended best polynomial approximation operator. As an application, we obtain norm convergence of the coefficients of the best polynomial approximation.
Fil: Cuenya, H.. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina
Fil: Favier, Sergio José. Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Matemática Aplicada de San Luis; Argentina
Fil: Zo, Felipe. Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Matemática Aplicada de San Luis; Argentina
description The best polynomial approximation operator was recently extended by one of the authors from Lp to Lp−1. In this paper, we study weak and strong inequalities for maximal operators related with the extended best polynomial approximation operator. As an application, we obtain norm convergence of the coefficients of the best polynomial approximation.
publishDate 2012
dc.date.none.fl_str_mv 2012-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/15413
Cuenya, H.; Favier, Sergio José; Zo, Felipe; Inequalities in Lp−1 for the extended Lp best approximation operator; Elsevier Inc; Journal Of Mathematical Analysis And Applications; 393; 1; 9-2012; 80-88
0022-247X
url http://hdl.handle.net/11336/15413
identifier_str_mv Cuenya, H.; Favier, Sergio José; Zo, Felipe; Inequalities in Lp−1 for the extended Lp best approximation operator; Elsevier Inc; Journal Of Mathematical Analysis And Applications; 393; 1; 9-2012; 80-88
0022-247X
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2012.02.067
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X12002247
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Inc
publisher.none.fl_str_mv Elsevier Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270121830121472
score 13.13397