The polynomial method over varieties
- Autores
- Walsh, Miguel Nicolás
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We establish sharp estimates that adapt the polynomial method to arbitrary varieties. These include a partitioning theorem, estimates on polynomials vanishing on fixed sets and bounds for the number of connected components of real algebraic varieties. As a first application, we provide a general incidence estimate that is tight in its dependence on the size, degree and dimension of the varieties involved.
Fil: Walsh, Miguel Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
Polynomial method
Real algebraic geometry
Incidence geometry
Milnor-Thom - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/143908
Ver los metadatos del registro completo
id |
CONICETDig_a97085be24e3a60fa1f28b7acbc360c7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/143908 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The polynomial method over varietiesWalsh, Miguel NicolásPolynomial methodReal algebraic geometryIncidence geometryMilnor-Thomhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We establish sharp estimates that adapt the polynomial method to arbitrary varieties. These include a partitioning theorem, estimates on polynomials vanishing on fixed sets and bounds for the number of connected components of real algebraic varieties. As a first application, we provide a general incidence estimate that is tight in its dependence on the size, degree and dimension of the varieties involved.Fil: Walsh, Miguel Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaSpringer2020-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/143908Walsh, Miguel Nicolás; The polynomial method over varieties; Springer; Inventiones Mathematicae; 222; 2; 11-2020; 469-5120020-9910CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s00222-020-00975-6info:eu-repo/semantics/altIdentifier/doi/10.1007/s00222-020-00975-6info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1811.07865info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:50:50Zoai:ri.conicet.gov.ar:11336/143908instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:50:51.08CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The polynomial method over varieties |
title |
The polynomial method over varieties |
spellingShingle |
The polynomial method over varieties Walsh, Miguel Nicolás Polynomial method Real algebraic geometry Incidence geometry Milnor-Thom |
title_short |
The polynomial method over varieties |
title_full |
The polynomial method over varieties |
title_fullStr |
The polynomial method over varieties |
title_full_unstemmed |
The polynomial method over varieties |
title_sort |
The polynomial method over varieties |
dc.creator.none.fl_str_mv |
Walsh, Miguel Nicolás |
author |
Walsh, Miguel Nicolás |
author_facet |
Walsh, Miguel Nicolás |
author_role |
author |
dc.subject.none.fl_str_mv |
Polynomial method Real algebraic geometry Incidence geometry Milnor-Thom |
topic |
Polynomial method Real algebraic geometry Incidence geometry Milnor-Thom |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We establish sharp estimates that adapt the polynomial method to arbitrary varieties. These include a partitioning theorem, estimates on polynomials vanishing on fixed sets and bounds for the number of connected components of real algebraic varieties. As a first application, we provide a general incidence estimate that is tight in its dependence on the size, degree and dimension of the varieties involved. Fil: Walsh, Miguel Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
We establish sharp estimates that adapt the polynomial method to arbitrary varieties. These include a partitioning theorem, estimates on polynomials vanishing on fixed sets and bounds for the number of connected components of real algebraic varieties. As a first application, we provide a general incidence estimate that is tight in its dependence on the size, degree and dimension of the varieties involved. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/143908 Walsh, Miguel Nicolás; The polynomial method over varieties; Springer; Inventiones Mathematicae; 222; 2; 11-2020; 469-512 0020-9910 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/143908 |
identifier_str_mv |
Walsh, Miguel Nicolás; The polynomial method over varieties; Springer; Inventiones Mathematicae; 222; 2; 11-2020; 469-512 0020-9910 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s00222-020-00975-6 info:eu-repo/semantics/altIdentifier/doi/10.1007/s00222-020-00975-6 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1811.07865 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269057062010880 |
score |
13.13397 |