Concentration estimates for algebraic intersections
- Autores
- Walsh, Miguel Nicolás
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present an approach over arbitrary fields to bound the degree of intersection of families of varieties in terms of how these concentrate on algebraic sets of smaller codimension. This provides in particular a substantial extension of the method of degree-reduction that enables it to deal efficiently with higher-dimensional problems and also with high-degree varieties. We obtain sharp bounds that are new even in the case of lines in ℝn and show that besides doubly-ruled varieties, only a certain rare family of varieties can be relevant for the study of incidence questions.
Fil: Walsh, Miguel Nicolás. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
INCIDENCE GEOMETRY
POLYNOMIAL METHOD
DISCRETE GEOMETRY
INTERSECTION THEORY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/226788
Ver los metadatos del registro completo
id |
CONICETDig_140f11f8d4bed8adc32ab19efaf8f16e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/226788 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Concentration estimates for algebraic intersectionsWalsh, Miguel NicolásINCIDENCE GEOMETRYPOLYNOMIAL METHODDISCRETE GEOMETRYINTERSECTION THEORYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We present an approach over arbitrary fields to bound the degree of intersection of families of varieties in terms of how these concentrate on algebraic sets of smaller codimension. This provides in particular a substantial extension of the method of degree-reduction that enables it to deal efficiently with higher-dimensional problems and also with high-degree varieties. We obtain sharp bounds that are new even in the case of lines in ℝn and show that besides doubly-ruled varieties, only a certain rare family of varieties can be relevant for the study of incidence questions.Fil: Walsh, Miguel Nicolás. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaJohns Hopkins University Press2023-04-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/226788Walsh, Miguel Nicolás; Concentration estimates for algebraic intersections; Johns Hopkins University Press; American Journal Of Mathematics; 145; 2; 3-4-2023; 435-4750002-9327CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1906.05843info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:00:28Zoai:ri.conicet.gov.ar:11336/226788instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:00:28.789CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Concentration estimates for algebraic intersections |
title |
Concentration estimates for algebraic intersections |
spellingShingle |
Concentration estimates for algebraic intersections Walsh, Miguel Nicolás INCIDENCE GEOMETRY POLYNOMIAL METHOD DISCRETE GEOMETRY INTERSECTION THEORY |
title_short |
Concentration estimates for algebraic intersections |
title_full |
Concentration estimates for algebraic intersections |
title_fullStr |
Concentration estimates for algebraic intersections |
title_full_unstemmed |
Concentration estimates for algebraic intersections |
title_sort |
Concentration estimates for algebraic intersections |
dc.creator.none.fl_str_mv |
Walsh, Miguel Nicolás |
author |
Walsh, Miguel Nicolás |
author_facet |
Walsh, Miguel Nicolás |
author_role |
author |
dc.subject.none.fl_str_mv |
INCIDENCE GEOMETRY POLYNOMIAL METHOD DISCRETE GEOMETRY INTERSECTION THEORY |
topic |
INCIDENCE GEOMETRY POLYNOMIAL METHOD DISCRETE GEOMETRY INTERSECTION THEORY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present an approach over arbitrary fields to bound the degree of intersection of families of varieties in terms of how these concentrate on algebraic sets of smaller codimension. This provides in particular a substantial extension of the method of degree-reduction that enables it to deal efficiently with higher-dimensional problems and also with high-degree varieties. We obtain sharp bounds that are new even in the case of lines in ℝn and show that besides doubly-ruled varieties, only a certain rare family of varieties can be relevant for the study of incidence questions. Fil: Walsh, Miguel Nicolás. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
We present an approach over arbitrary fields to bound the degree of intersection of families of varieties in terms of how these concentrate on algebraic sets of smaller codimension. This provides in particular a substantial extension of the method of degree-reduction that enables it to deal efficiently with higher-dimensional problems and also with high-degree varieties. We obtain sharp bounds that are new even in the case of lines in ℝn and show that besides doubly-ruled varieties, only a certain rare family of varieties can be relevant for the study of incidence questions. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-04-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/226788 Walsh, Miguel Nicolás; Concentration estimates for algebraic intersections; Johns Hopkins University Press; American Journal Of Mathematics; 145; 2; 3-4-2023; 435-475 0002-9327 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/226788 |
identifier_str_mv |
Walsh, Miguel Nicolás; Concentration estimates for algebraic intersections; Johns Hopkins University Press; American Journal Of Mathematics; 145; 2; 3-4-2023; 435-475 0002-9327 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1906.05843 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Johns Hopkins University Press |
publisher.none.fl_str_mv |
Johns Hopkins University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269639962263552 |
score |
13.13397 |