Random series in Lp(X, Σ,μ) using unconditional basic sequences and lp stable sequences: A result on almost sure almost everywhere convergence

Autores
Medina, Juan Miguel; Cernuschi Frias, Bruno
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Here we study the almost sure almost everywhere convergence of random series of the form Σ∞ i=1αifi in the Lebesgue spaces L p(X, Σ,μ), where the ai's are centered random variables, and the fi's constitute an unconditional basic sequence or an lp stable sequence. We show that if one of these series converges in the norm topology almost surely, then it converges almost everywhere almost surely.
Fil: Medina, Juan Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Cernuschi Frias, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Materia
ALMOST SURE CONVERGENCE
RANDOM SERIES
UNCONDITIONAL BASIC SEQUENCE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/100042

id CONICETDig_a7d6cee72cb30edc26d948026c6c82b0
oai_identifier_str oai:ri.conicet.gov.ar:11336/100042
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Random series in Lp(X, Σ,μ) using unconditional basic sequences and lp stable sequences: A result on almost sure almost everywhere convergenceMedina, Juan MiguelCernuschi Frias, BrunoALMOST SURE CONVERGENCERANDOM SERIESUNCONDITIONAL BASIC SEQUENCEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Here we study the almost sure almost everywhere convergence of random series of the form Σ∞ i=1αifi in the Lebesgue spaces L p(X, Σ,μ), where the ai's are centered random variables, and the fi's constitute an unconditional basic sequence or an lp stable sequence. We show that if one of these series converges in the norm topology almost surely, then it converges almost everywhere almost surely.Fil: Medina, Juan Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Cernuschi Frias, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaAmerican Mathematical Society2007-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100042Medina, Juan Miguel; Cernuschi Frias, Bruno; Random series in Lp(X, Σ,μ) using unconditional basic sequences and lp stable sequences: A result on almost sure almost everywhere convergence; American Mathematical Society; Proceedings of the American Mathematical Society; 135; 11; 11-2007; 3561-35690002-99391088-6826CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2007-135-11/S0002-9939-07-08870-3/info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9939-07-08870-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:43:36Zoai:ri.conicet.gov.ar:11336/100042instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:43:37.047CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Random series in Lp(X, Σ,μ) using unconditional basic sequences and lp stable sequences: A result on almost sure almost everywhere convergence
title Random series in Lp(X, Σ,μ) using unconditional basic sequences and lp stable sequences: A result on almost sure almost everywhere convergence
spellingShingle Random series in Lp(X, Σ,μ) using unconditional basic sequences and lp stable sequences: A result on almost sure almost everywhere convergence
Medina, Juan Miguel
ALMOST SURE CONVERGENCE
RANDOM SERIES
UNCONDITIONAL BASIC SEQUENCE
title_short Random series in Lp(X, Σ,μ) using unconditional basic sequences and lp stable sequences: A result on almost sure almost everywhere convergence
title_full Random series in Lp(X, Σ,μ) using unconditional basic sequences and lp stable sequences: A result on almost sure almost everywhere convergence
title_fullStr Random series in Lp(X, Σ,μ) using unconditional basic sequences and lp stable sequences: A result on almost sure almost everywhere convergence
title_full_unstemmed Random series in Lp(X, Σ,μ) using unconditional basic sequences and lp stable sequences: A result on almost sure almost everywhere convergence
title_sort Random series in Lp(X, Σ,μ) using unconditional basic sequences and lp stable sequences: A result on almost sure almost everywhere convergence
dc.creator.none.fl_str_mv Medina, Juan Miguel
Cernuschi Frias, Bruno
author Medina, Juan Miguel
author_facet Medina, Juan Miguel
Cernuschi Frias, Bruno
author_role author
author2 Cernuschi Frias, Bruno
author2_role author
dc.subject.none.fl_str_mv ALMOST SURE CONVERGENCE
RANDOM SERIES
UNCONDITIONAL BASIC SEQUENCE
topic ALMOST SURE CONVERGENCE
RANDOM SERIES
UNCONDITIONAL BASIC SEQUENCE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Here we study the almost sure almost everywhere convergence of random series of the form Σ∞ i=1αifi in the Lebesgue spaces L p(X, Σ,μ), where the ai's are centered random variables, and the fi's constitute an unconditional basic sequence or an lp stable sequence. We show that if one of these series converges in the norm topology almost surely, then it converges almost everywhere almost surely.
Fil: Medina, Juan Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Cernuschi Frias, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
description Here we study the almost sure almost everywhere convergence of random series of the form Σ∞ i=1αifi in the Lebesgue spaces L p(X, Σ,μ), where the ai's are centered random variables, and the fi's constitute an unconditional basic sequence or an lp stable sequence. We show that if one of these series converges in the norm topology almost surely, then it converges almost everywhere almost surely.
publishDate 2007
dc.date.none.fl_str_mv 2007-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/100042
Medina, Juan Miguel; Cernuschi Frias, Bruno; Random series in Lp(X, Σ,μ) using unconditional basic sequences and lp stable sequences: A result on almost sure almost everywhere convergence; American Mathematical Society; Proceedings of the American Mathematical Society; 135; 11; 11-2007; 3561-3569
0002-9939
1088-6826
CONICET Digital
CONICET
url http://hdl.handle.net/11336/100042
identifier_str_mv Medina, Juan Miguel; Cernuschi Frias, Bruno; Random series in Lp(X, Σ,μ) using unconditional basic sequences and lp stable sequences: A result on almost sure almost everywhere convergence; American Mathematical Society; Proceedings of the American Mathematical Society; 135; 11; 11-2007; 3561-3569
0002-9939
1088-6826
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2007-135-11/S0002-9939-07-08870-3/
info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9939-07-08870-3
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Mathematical Society
publisher.none.fl_str_mv American Mathematical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614471760216064
score 13.070432