Zeta functions of the 3-dimensional almost-Bieberbach groups
- Autores
- Sulca, Diego Armando
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The subgroup zeta function and the normal zeta function of a finitely generated virtually nilpotent group can be expressed as finite sums of Dirichlet series admitting Euler product factorization. We compute these series except for a finite number of local factors when the group is virtually nilpotent of Hirsch length 3. We deduce that they can be meromorphically continued to the whole complex plane and that they satisfy local functional equations. The complete computation (with no exception of local factors) is presented for those groups that are also torsion-free, that is, for the 3-dimensional almost-Bieberbach groups.
Fil: Sulca, Diego Armando. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
ZETA FUNCTIONS
SUBGROUP GROWTH
ALMOST-BIEBERBACH GROUPS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/217372
Ver los metadatos del registro completo
id |
CONICETDig_71fb815644171655e75b898d1f79404e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/217372 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Zeta functions of the 3-dimensional almost-Bieberbach groupsSulca, Diego ArmandoZETA FUNCTIONSSUBGROUP GROWTHALMOST-BIEBERBACH GROUPShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The subgroup zeta function and the normal zeta function of a finitely generated virtually nilpotent group can be expressed as finite sums of Dirichlet series admitting Euler product factorization. We compute these series except for a finite number of local factors when the group is virtually nilpotent of Hirsch length 3. We deduce that they can be meromorphically continued to the whole complex plane and that they satisfy local functional equations. The complete computation (with no exception of local factors) is presented for those groups that are also torsion-free, that is, for the 3-dimensional almost-Bieberbach groups.Fil: Sulca, Diego Armando. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaDe Gruyter2022-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/217372Sulca, Diego Armando; Zeta functions of the 3-dimensional almost-Bieberbach groups; De Gruyter; Journal Of Group Theory; 25; 4; 1-2022; 601-6781433-5883CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1515/jgth-2021-0072info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:10:23Zoai:ri.conicet.gov.ar:11336/217372instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:10:23.561CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Zeta functions of the 3-dimensional almost-Bieberbach groups |
title |
Zeta functions of the 3-dimensional almost-Bieberbach groups |
spellingShingle |
Zeta functions of the 3-dimensional almost-Bieberbach groups Sulca, Diego Armando ZETA FUNCTIONS SUBGROUP GROWTH ALMOST-BIEBERBACH GROUPS |
title_short |
Zeta functions of the 3-dimensional almost-Bieberbach groups |
title_full |
Zeta functions of the 3-dimensional almost-Bieberbach groups |
title_fullStr |
Zeta functions of the 3-dimensional almost-Bieberbach groups |
title_full_unstemmed |
Zeta functions of the 3-dimensional almost-Bieberbach groups |
title_sort |
Zeta functions of the 3-dimensional almost-Bieberbach groups |
dc.creator.none.fl_str_mv |
Sulca, Diego Armando |
author |
Sulca, Diego Armando |
author_facet |
Sulca, Diego Armando |
author_role |
author |
dc.subject.none.fl_str_mv |
ZETA FUNCTIONS SUBGROUP GROWTH ALMOST-BIEBERBACH GROUPS |
topic |
ZETA FUNCTIONS SUBGROUP GROWTH ALMOST-BIEBERBACH GROUPS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The subgroup zeta function and the normal zeta function of a finitely generated virtually nilpotent group can be expressed as finite sums of Dirichlet series admitting Euler product factorization. We compute these series except for a finite number of local factors when the group is virtually nilpotent of Hirsch length 3. We deduce that they can be meromorphically continued to the whole complex plane and that they satisfy local functional equations. The complete computation (with no exception of local factors) is presented for those groups that are also torsion-free, that is, for the 3-dimensional almost-Bieberbach groups. Fil: Sulca, Diego Armando. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
The subgroup zeta function and the normal zeta function of a finitely generated virtually nilpotent group can be expressed as finite sums of Dirichlet series admitting Euler product factorization. We compute these series except for a finite number of local factors when the group is virtually nilpotent of Hirsch length 3. We deduce that they can be meromorphically continued to the whole complex plane and that they satisfy local functional equations. The complete computation (with no exception of local factors) is presented for those groups that are also torsion-free, that is, for the 3-dimensional almost-Bieberbach groups. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/217372 Sulca, Diego Armando; Zeta functions of the 3-dimensional almost-Bieberbach groups; De Gruyter; Journal Of Group Theory; 25; 4; 1-2022; 601-678 1433-5883 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/217372 |
identifier_str_mv |
Sulca, Diego Armando; Zeta functions of the 3-dimensional almost-Bieberbach groups; De Gruyter; Journal Of Group Theory; 25; 4; 1-2022; 601-678 1433-5883 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1515/jgth-2021-0072 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/zip application/pdf |
dc.publisher.none.fl_str_mv |
De Gruyter |
publisher.none.fl_str_mv |
De Gruyter |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980522031054848 |
score |
12.993085 |