Curvature flows for almost-hermitian Lie groups
- Autores
- Lauret, Jorge Ruben
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study curvature flows in the locally homogeneous case (e.g. compact quotients of Lie groups, solvmanifolds, nilmanifolds) in a unified way, by considering a generic flow under just a few natural conditions on the broad class of almost-hermitian structures. As a main tool, we use an ODE system defined on the variety of 2n-dimensional Lie algebras, called the bracket flow, whose solutions differ from those to the original curvature flow by only pull-back by time-dependent diffeomorphisms. The approach, which has already been used to study the Ricci flow on homogeneous manifolds, is useful to better visualize the possible pointed limits of solutions, under diverse rescalings, as well as to address regularity issues. Immortal, ancient and self-similar solutions arise naturally from the qualitative analysis of the bracket flow. The Chern-Ricci flow and the symplectic curvature flow are considered in more detail.
Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
Curvature
Flow
Almost-Hermitian
Lie Groups - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/32139
Ver los metadatos del registro completo
id |
CONICETDig_bb31ad2b5a3122b98652170c7d3e9365 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/32139 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Curvature flows for almost-hermitian Lie groupsLauret, Jorge RubenCurvatureFlowAlmost-HermitianLie Groupshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study curvature flows in the locally homogeneous case (e.g. compact quotients of Lie groups, solvmanifolds, nilmanifolds) in a unified way, by considering a generic flow under just a few natural conditions on the broad class of almost-hermitian structures. As a main tool, we use an ODE system defined on the variety of 2n-dimensional Lie algebras, called the bracket flow, whose solutions differ from those to the original curvature flow by only pull-back by time-dependent diffeomorphisms. The approach, which has already been used to study the Ricci flow on homogeneous manifolds, is useful to better visualize the possible pointed limits of solutions, under diverse rescalings, as well as to address regularity issues. Immortal, ancient and self-similar solutions arise naturally from the qualitative analysis of the bracket flow. The Chern-Ricci flow and the symplectic curvature flow are considered in more detail.Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaAmerican Mathematical Society2014-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/32139Lauret, Jorge Ruben; Curvature flows for almost-hermitian Lie groups; American Mathematical Society; Transactions Of The American Mathematical Society; 367; 12-2014; 7453-74800002-9947CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1306.5931info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:48Zoai:ri.conicet.gov.ar:11336/32139instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:48.767CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Curvature flows for almost-hermitian Lie groups |
title |
Curvature flows for almost-hermitian Lie groups |
spellingShingle |
Curvature flows for almost-hermitian Lie groups Lauret, Jorge Ruben Curvature Flow Almost-Hermitian Lie Groups |
title_short |
Curvature flows for almost-hermitian Lie groups |
title_full |
Curvature flows for almost-hermitian Lie groups |
title_fullStr |
Curvature flows for almost-hermitian Lie groups |
title_full_unstemmed |
Curvature flows for almost-hermitian Lie groups |
title_sort |
Curvature flows for almost-hermitian Lie groups |
dc.creator.none.fl_str_mv |
Lauret, Jorge Ruben |
author |
Lauret, Jorge Ruben |
author_facet |
Lauret, Jorge Ruben |
author_role |
author |
dc.subject.none.fl_str_mv |
Curvature Flow Almost-Hermitian Lie Groups |
topic |
Curvature Flow Almost-Hermitian Lie Groups |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study curvature flows in the locally homogeneous case (e.g. compact quotients of Lie groups, solvmanifolds, nilmanifolds) in a unified way, by considering a generic flow under just a few natural conditions on the broad class of almost-hermitian structures. As a main tool, we use an ODE system defined on the variety of 2n-dimensional Lie algebras, called the bracket flow, whose solutions differ from those to the original curvature flow by only pull-back by time-dependent diffeomorphisms. The approach, which has already been used to study the Ricci flow on homogeneous manifolds, is useful to better visualize the possible pointed limits of solutions, under diverse rescalings, as well as to address regularity issues. Immortal, ancient and self-similar solutions arise naturally from the qualitative analysis of the bracket flow. The Chern-Ricci flow and the symplectic curvature flow are considered in more detail. Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
We study curvature flows in the locally homogeneous case (e.g. compact quotients of Lie groups, solvmanifolds, nilmanifolds) in a unified way, by considering a generic flow under just a few natural conditions on the broad class of almost-hermitian structures. As a main tool, we use an ODE system defined on the variety of 2n-dimensional Lie algebras, called the bracket flow, whose solutions differ from those to the original curvature flow by only pull-back by time-dependent diffeomorphisms. The approach, which has already been used to study the Ricci flow on homogeneous manifolds, is useful to better visualize the possible pointed limits of solutions, under diverse rescalings, as well as to address regularity issues. Immortal, ancient and self-similar solutions arise naturally from the qualitative analysis of the bracket flow. The Chern-Ricci flow and the symplectic curvature flow are considered in more detail. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/32139 Lauret, Jorge Ruben; Curvature flows for almost-hermitian Lie groups; American Mathematical Society; Transactions Of The American Mathematical Society; 367; 12-2014; 7453-7480 0002-9947 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/32139 |
identifier_str_mv |
Lauret, Jorge Ruben; Curvature flows for almost-hermitian Lie groups; American Mathematical Society; Transactions Of The American Mathematical Society; 367; 12-2014; 7453-7480 0002-9947 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1306.5931 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Mathematical Society |
publisher.none.fl_str_mv |
American Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269975206690816 |
score |
13.13397 |