Curvature flows for almost-hermitian Lie groups

Autores
Lauret, Jorge Ruben
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study curvature flows in the locally homogeneous case (e.g. compact quotients of Lie groups, solvmanifolds, nilmanifolds) in a unified way, by considering a generic flow under just a few natural conditions on the broad class of almost-hermitian structures. As a main tool, we use an ODE system defined on the variety of 2n-dimensional Lie algebras, called the bracket flow, whose solutions differ from those to the original curvature flow by only pull-back by time-dependent diffeomorphisms. The approach, which has already been used to study the Ricci flow on homogeneous manifolds, is useful to better visualize the possible pointed limits of solutions, under diverse rescalings, as well as to address regularity issues. Immortal, ancient and self-similar solutions arise naturally from the qualitative analysis of the bracket flow. The Chern-Ricci flow and the symplectic curvature flow are considered in more detail.
Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Materia
Curvature
Flow
Almost-Hermitian
Lie Groups
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/32139

id CONICETDig_bb31ad2b5a3122b98652170c7d3e9365
oai_identifier_str oai:ri.conicet.gov.ar:11336/32139
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Curvature flows for almost-hermitian Lie groupsLauret, Jorge RubenCurvatureFlowAlmost-HermitianLie Groupshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study curvature flows in the locally homogeneous case (e.g. compact quotients of Lie groups, solvmanifolds, nilmanifolds) in a unified way, by considering a generic flow under just a few natural conditions on the broad class of almost-hermitian structures. As a main tool, we use an ODE system defined on the variety of 2n-dimensional Lie algebras, called the bracket flow, whose solutions differ from those to the original curvature flow by only pull-back by time-dependent diffeomorphisms. The approach, which has already been used to study the Ricci flow on homogeneous manifolds, is useful to better visualize the possible pointed limits of solutions, under diverse rescalings, as well as to address regularity issues. Immortal, ancient and self-similar solutions arise naturally from the qualitative analysis of the bracket flow. The Chern-Ricci flow and the symplectic curvature flow are considered in more detail.Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaAmerican Mathematical Society2014-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/32139Lauret, Jorge Ruben; Curvature flows for almost-hermitian Lie groups; American Mathematical Society; Transactions Of The American Mathematical Society; 367; 12-2014; 7453-74800002-9947CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1306.5931info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:48Zoai:ri.conicet.gov.ar:11336/32139instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:48.767CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Curvature flows for almost-hermitian Lie groups
title Curvature flows for almost-hermitian Lie groups
spellingShingle Curvature flows for almost-hermitian Lie groups
Lauret, Jorge Ruben
Curvature
Flow
Almost-Hermitian
Lie Groups
title_short Curvature flows for almost-hermitian Lie groups
title_full Curvature flows for almost-hermitian Lie groups
title_fullStr Curvature flows for almost-hermitian Lie groups
title_full_unstemmed Curvature flows for almost-hermitian Lie groups
title_sort Curvature flows for almost-hermitian Lie groups
dc.creator.none.fl_str_mv Lauret, Jorge Ruben
author Lauret, Jorge Ruben
author_facet Lauret, Jorge Ruben
author_role author
dc.subject.none.fl_str_mv Curvature
Flow
Almost-Hermitian
Lie Groups
topic Curvature
Flow
Almost-Hermitian
Lie Groups
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study curvature flows in the locally homogeneous case (e.g. compact quotients of Lie groups, solvmanifolds, nilmanifolds) in a unified way, by considering a generic flow under just a few natural conditions on the broad class of almost-hermitian structures. As a main tool, we use an ODE system defined on the variety of 2n-dimensional Lie algebras, called the bracket flow, whose solutions differ from those to the original curvature flow by only pull-back by time-dependent diffeomorphisms. The approach, which has already been used to study the Ricci flow on homogeneous manifolds, is useful to better visualize the possible pointed limits of solutions, under diverse rescalings, as well as to address regularity issues. Immortal, ancient and self-similar solutions arise naturally from the qualitative analysis of the bracket flow. The Chern-Ricci flow and the symplectic curvature flow are considered in more detail.
Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
description We study curvature flows in the locally homogeneous case (e.g. compact quotients of Lie groups, solvmanifolds, nilmanifolds) in a unified way, by considering a generic flow under just a few natural conditions on the broad class of almost-hermitian structures. As a main tool, we use an ODE system defined on the variety of 2n-dimensional Lie algebras, called the bracket flow, whose solutions differ from those to the original curvature flow by only pull-back by time-dependent diffeomorphisms. The approach, which has already been used to study the Ricci flow on homogeneous manifolds, is useful to better visualize the possible pointed limits of solutions, under diverse rescalings, as well as to address regularity issues. Immortal, ancient and self-similar solutions arise naturally from the qualitative analysis of the bracket flow. The Chern-Ricci flow and the symplectic curvature flow are considered in more detail.
publishDate 2014
dc.date.none.fl_str_mv 2014-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/32139
Lauret, Jorge Ruben; Curvature flows for almost-hermitian Lie groups; American Mathematical Society; Transactions Of The American Mathematical Society; 367; 12-2014; 7453-7480
0002-9947
CONICET Digital
CONICET
url http://hdl.handle.net/11336/32139
identifier_str_mv Lauret, Jorge Ruben; Curvature flows for almost-hermitian Lie groups; American Mathematical Society; Transactions Of The American Mathematical Society; 367; 12-2014; 7453-7480
0002-9947
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1306.5931
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Mathematical Society
publisher.none.fl_str_mv American Mathematical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269975206690816
score 13.13397