Restricted weak type inequalities for convolution maximal operators in weighted Lp spaces

Autores
Bernardis, Ana Lucia; Martín Reyes, Francisco Javier
Año de publicación
2003
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let φ: ℝ → [0, ∞) be an integrable function such that φ(-∞,0) = 0 and φ is decreasing in (0, ∞). Let τh f (x) = f (x - h), with h ∈ ℝ/{0} and φ R(x) = (1/R)φ(x/R), with R > 0. In this paper we study the pair of weights (u, v) such that the operators Mτhφ f (x) = supR>0 |f| * [tau;hφ]R (x) are of restricted weak type (p, p) with respect to (u, v), 1 ≤ p < ∞. As particular cases, these operators include some maximal operators related to Cesàro convergence. We characterize those functions φ for which Mτhφ is of (restricted) weak type (p, p) with respect to the Lebesgue measure. Unlike the case of the Cesàro maximal operators, it follows from the characterization that the interval of those p such that M τhφ is of weak type (p, p) can be left-closed, [p 0, ∞], or left-open, (p0, ∞], without having restricted weak type (p0, p0).
Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Martín Reyes, Francisco Javier. Universidad de Málaga; España
Materia
Restricted weak
Maximal operators
Weighted Lp spaces
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/100613

id CONICETDig_5ab976a027ff8fababc6cfb3c42fe2f7
oai_identifier_str oai:ri.conicet.gov.ar:11336/100613
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Restricted weak type inequalities for convolution maximal operators in weighted Lp spacesBernardis, Ana LuciaMartín Reyes, Francisco JavierRestricted weakMaximal operatorsWeighted Lp spaceshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let φ: ℝ → [0, ∞) be an integrable function such that φ(-∞,0) = 0 and φ is decreasing in (0, ∞). Let τh f (x) = f (x - h), with h ∈ ℝ/{0} and φ R(x) = (1/R)φ(x/R), with R > 0. In this paper we study the pair of weights (u, v) such that the operators Mτhφ f (x) = supR>0 |f| * [tau;hφ]R (x) are of restricted weak type (p, p) with respect to (u, v), 1 ≤ p < ∞. As particular cases, these operators include some maximal operators related to Cesàro convergence. We characterize those functions φ for which Mτhφ is of (restricted) weak type (p, p) with respect to the Lebesgue measure. Unlike the case of the Cesàro maximal operators, it follows from the characterization that the interval of those p such that M τhφ is of weak type (p, p) can be left-closed, [p 0, ∞], or left-open, (p0, ∞], without having restricted weak type (p0, p0).Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Martín Reyes, Francisco Javier. Universidad de Málaga; EspañaOxford University Press2003-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100613Bernardis, Ana Lucia; Martín Reyes, Francisco Javier; Restricted weak type inequalities for convolution maximal operators in weighted Lp spaces; Oxford University Press; Quarterly Journal Of Mathematics; 54; 2; 6-2003; 139-1570033-5606CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1093/qmath/hag017info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:19:32Zoai:ri.conicet.gov.ar:11336/100613instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:19:32.342CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Restricted weak type inequalities for convolution maximal operators in weighted Lp spaces
title Restricted weak type inequalities for convolution maximal operators in weighted Lp spaces
spellingShingle Restricted weak type inequalities for convolution maximal operators in weighted Lp spaces
Bernardis, Ana Lucia
Restricted weak
Maximal operators
Weighted Lp spaces
title_short Restricted weak type inequalities for convolution maximal operators in weighted Lp spaces
title_full Restricted weak type inequalities for convolution maximal operators in weighted Lp spaces
title_fullStr Restricted weak type inequalities for convolution maximal operators in weighted Lp spaces
title_full_unstemmed Restricted weak type inequalities for convolution maximal operators in weighted Lp spaces
title_sort Restricted weak type inequalities for convolution maximal operators in weighted Lp spaces
dc.creator.none.fl_str_mv Bernardis, Ana Lucia
Martín Reyes, Francisco Javier
author Bernardis, Ana Lucia
author_facet Bernardis, Ana Lucia
Martín Reyes, Francisco Javier
author_role author
author2 Martín Reyes, Francisco Javier
author2_role author
dc.subject.none.fl_str_mv Restricted weak
Maximal operators
Weighted Lp spaces
topic Restricted weak
Maximal operators
Weighted Lp spaces
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let φ: ℝ → [0, ∞) be an integrable function such that φ(-∞,0) = 0 and φ is decreasing in (0, ∞). Let τh f (x) = f (x - h), with h ∈ ℝ/{0} and φ R(x) = (1/R)φ(x/R), with R > 0. In this paper we study the pair of weights (u, v) such that the operators Mτhφ f (x) = supR>0 |f| * [tau;hφ]R (x) are of restricted weak type (p, p) with respect to (u, v), 1 ≤ p < ∞. As particular cases, these operators include some maximal operators related to Cesàro convergence. We characterize those functions φ for which Mτhφ is of (restricted) weak type (p, p) with respect to the Lebesgue measure. Unlike the case of the Cesàro maximal operators, it follows from the characterization that the interval of those p such that M τhφ is of weak type (p, p) can be left-closed, [p 0, ∞], or left-open, (p0, ∞], without having restricted weak type (p0, p0).
Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Martín Reyes, Francisco Javier. Universidad de Málaga; España
description Let φ: ℝ → [0, ∞) be an integrable function such that φ(-∞,0) = 0 and φ is decreasing in (0, ∞). Let τh f (x) = f (x - h), with h ∈ ℝ/{0} and φ R(x) = (1/R)φ(x/R), with R > 0. In this paper we study the pair of weights (u, v) such that the operators Mτhφ f (x) = supR>0 |f| * [tau;hφ]R (x) are of restricted weak type (p, p) with respect to (u, v), 1 ≤ p < ∞. As particular cases, these operators include some maximal operators related to Cesàro convergence. We characterize those functions φ for which Mτhφ is of (restricted) weak type (p, p) with respect to the Lebesgue measure. Unlike the case of the Cesàro maximal operators, it follows from the characterization that the interval of those p such that M τhφ is of weak type (p, p) can be left-closed, [p 0, ∞], or left-open, (p0, ∞], without having restricted weak type (p0, p0).
publishDate 2003
dc.date.none.fl_str_mv 2003-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/100613
Bernardis, Ana Lucia; Martín Reyes, Francisco Javier; Restricted weak type inequalities for convolution maximal operators in weighted Lp spaces; Oxford University Press; Quarterly Journal Of Mathematics; 54; 2; 6-2003; 139-157
0033-5606
CONICET Digital
CONICET
url http://hdl.handle.net/11336/100613
identifier_str_mv Bernardis, Ana Lucia; Martín Reyes, Francisco Javier; Restricted weak type inequalities for convolution maximal operators in weighted Lp spaces; Oxford University Press; Quarterly Journal Of Mathematics; 54; 2; 6-2003; 139-157
0033-5606
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1093/qmath/hag017
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Oxford University Press
publisher.none.fl_str_mv Oxford University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614167462412288
score 13.070432