Restricted weak type inequalities for convolution maximal operators in weighted Lp spaces
- Autores
- Bernardis, Ana Lucia; Martín Reyes, Francisco Javier
- Año de publicación
- 2003
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let φ: ℝ → [0, ∞) be an integrable function such that φ(-∞,0) = 0 and φ is decreasing in (0, ∞). Let τh f (x) = f (x - h), with h ∈ ℝ/{0} and φ R(x) = (1/R)φ(x/R), with R > 0. In this paper we study the pair of weights (u, v) such that the operators Mτhφ f (x) = supR>0 |f| * [tau;hφ]R (x) are of restricted weak type (p, p) with respect to (u, v), 1 ≤ p < ∞. As particular cases, these operators include some maximal operators related to Cesàro convergence. We characterize those functions φ for which Mτhφ is of (restricted) weak type (p, p) with respect to the Lebesgue measure. Unlike the case of the Cesàro maximal operators, it follows from the characterization that the interval of those p such that M τhφ is of weak type (p, p) can be left-closed, [p 0, ∞], or left-open, (p0, ∞], without having restricted weak type (p0, p0).
Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Martín Reyes, Francisco Javier. Universidad de Málaga; España - Materia
-
Restricted weak
Maximal operators
Weighted Lp spaces - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/100613
Ver los metadatos del registro completo
id |
CONICETDig_5ab976a027ff8fababc6cfb3c42fe2f7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/100613 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Restricted weak type inequalities for convolution maximal operators in weighted Lp spacesBernardis, Ana LuciaMartín Reyes, Francisco JavierRestricted weakMaximal operatorsWeighted Lp spaceshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let φ: ℝ → [0, ∞) be an integrable function such that φ(-∞,0) = 0 and φ is decreasing in (0, ∞). Let τh f (x) = f (x - h), with h ∈ ℝ/{0} and φ R(x) = (1/R)φ(x/R), with R > 0. In this paper we study the pair of weights (u, v) such that the operators Mτhφ f (x) = supR>0 |f| * [tau;hφ]R (x) are of restricted weak type (p, p) with respect to (u, v), 1 ≤ p < ∞. As particular cases, these operators include some maximal operators related to Cesàro convergence. We characterize those functions φ for which Mτhφ is of (restricted) weak type (p, p) with respect to the Lebesgue measure. Unlike the case of the Cesàro maximal operators, it follows from the characterization that the interval of those p such that M τhφ is of weak type (p, p) can be left-closed, [p 0, ∞], or left-open, (p0, ∞], without having restricted weak type (p0, p0).Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Martín Reyes, Francisco Javier. Universidad de Málaga; EspañaOxford University Press2003-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100613Bernardis, Ana Lucia; Martín Reyes, Francisco Javier; Restricted weak type inequalities for convolution maximal operators in weighted Lp spaces; Oxford University Press; Quarterly Journal Of Mathematics; 54; 2; 6-2003; 139-1570033-5606CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1093/qmath/hag017info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:19:32Zoai:ri.conicet.gov.ar:11336/100613instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:19:32.342CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Restricted weak type inequalities for convolution maximal operators in weighted Lp spaces |
title |
Restricted weak type inequalities for convolution maximal operators in weighted Lp spaces |
spellingShingle |
Restricted weak type inequalities for convolution maximal operators in weighted Lp spaces Bernardis, Ana Lucia Restricted weak Maximal operators Weighted Lp spaces |
title_short |
Restricted weak type inequalities for convolution maximal operators in weighted Lp spaces |
title_full |
Restricted weak type inequalities for convolution maximal operators in weighted Lp spaces |
title_fullStr |
Restricted weak type inequalities for convolution maximal operators in weighted Lp spaces |
title_full_unstemmed |
Restricted weak type inequalities for convolution maximal operators in weighted Lp spaces |
title_sort |
Restricted weak type inequalities for convolution maximal operators in weighted Lp spaces |
dc.creator.none.fl_str_mv |
Bernardis, Ana Lucia Martín Reyes, Francisco Javier |
author |
Bernardis, Ana Lucia |
author_facet |
Bernardis, Ana Lucia Martín Reyes, Francisco Javier |
author_role |
author |
author2 |
Martín Reyes, Francisco Javier |
author2_role |
author |
dc.subject.none.fl_str_mv |
Restricted weak Maximal operators Weighted Lp spaces |
topic |
Restricted weak Maximal operators Weighted Lp spaces |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let φ: ℝ → [0, ∞) be an integrable function such that φ(-∞,0) = 0 and φ is decreasing in (0, ∞). Let τh f (x) = f (x - h), with h ∈ ℝ/{0} and φ R(x) = (1/R)φ(x/R), with R > 0. In this paper we study the pair of weights (u, v) such that the operators Mτhφ f (x) = supR>0 |f| * [tau;hφ]R (x) are of restricted weak type (p, p) with respect to (u, v), 1 ≤ p < ∞. As particular cases, these operators include some maximal operators related to Cesàro convergence. We characterize those functions φ for which Mτhφ is of (restricted) weak type (p, p) with respect to the Lebesgue measure. Unlike the case of the Cesàro maximal operators, it follows from the characterization that the interval of those p such that M τhφ is of weak type (p, p) can be left-closed, [p 0, ∞], or left-open, (p0, ∞], without having restricted weak type (p0, p0). Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Martín Reyes, Francisco Javier. Universidad de Málaga; España |
description |
Let φ: ℝ → [0, ∞) be an integrable function such that φ(-∞,0) = 0 and φ is decreasing in (0, ∞). Let τh f (x) = f (x - h), with h ∈ ℝ/{0} and φ R(x) = (1/R)φ(x/R), with R > 0. In this paper we study the pair of weights (u, v) such that the operators Mτhφ f (x) = supR>0 |f| * [tau;hφ]R (x) are of restricted weak type (p, p) with respect to (u, v), 1 ≤ p < ∞. As particular cases, these operators include some maximal operators related to Cesàro convergence. We characterize those functions φ for which Mτhφ is of (restricted) weak type (p, p) with respect to the Lebesgue measure. Unlike the case of the Cesàro maximal operators, it follows from the characterization that the interval of those p such that M τhφ is of weak type (p, p) can be left-closed, [p 0, ∞], or left-open, (p0, ∞], without having restricted weak type (p0, p0). |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/100613 Bernardis, Ana Lucia; Martín Reyes, Francisco Javier; Restricted weak type inequalities for convolution maximal operators in weighted Lp spaces; Oxford University Press; Quarterly Journal Of Mathematics; 54; 2; 6-2003; 139-157 0033-5606 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/100613 |
identifier_str_mv |
Bernardis, Ana Lucia; Martín Reyes, Francisco Javier; Restricted weak type inequalities for convolution maximal operators in weighted Lp spaces; Oxford University Press; Quarterly Journal Of Mathematics; 54; 2; 6-2003; 139-157 0033-5606 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1093/qmath/hag017 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Oxford University Press |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614167462412288 |
score |
13.070432 |