Invariant almost complex structures on real flag manifolds
- Autores
- Freitas, Ana P. C.; del Barco, Viviana Jorgelina; San Martin, Luiz A. B.
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work, we study the existence of invariant almost complex structures on real flag manifolds associated to split real forms of complex simple Lie algebras. We show that, contrary to the complex case where the invariant almost complex structures are well known, some real flag manifolds do not admit such structures. We check which invariant almost complex structures are integrable and prove that only some flag manifolds of the Lie algebra C l admit complex structures.
Fil: Freitas, Ana P. C.. Universidade Estadual de Campinas; Brasil
Fil: del Barco, Viviana Jorgelina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidade Estadual de Campinas; Brasil
Fil: San Martin, Luiz A. B.. Universidade Estadual de Campinas; Brasil - Materia
-
HOMOGENEOUS MANIFOLD
INVARIANT ALMOST COMPLEX STRUCTURE
ISOTROPY REPRESENTATION
REAL FLAG MANIFOLD - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/92694
Ver los metadatos del registro completo
id |
CONICETDig_a4aa8ab4b7f0e185704d4d62b35764c7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/92694 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Invariant almost complex structures on real flag manifoldsFreitas, Ana P. C.del Barco, Viviana JorgelinaSan Martin, Luiz A. B.HOMOGENEOUS MANIFOLDINVARIANT ALMOST COMPLEX STRUCTUREISOTROPY REPRESENTATIONREAL FLAG MANIFOLDhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this work, we study the existence of invariant almost complex structures on real flag manifolds associated to split real forms of complex simple Lie algebras. We show that, contrary to the complex case where the invariant almost complex structures are well known, some real flag manifolds do not admit such structures. We check which invariant almost complex structures are integrable and prove that only some flag manifolds of the Lie algebra C l admit complex structures.Fil: Freitas, Ana P. C.. Universidade Estadual de Campinas; BrasilFil: del Barco, Viviana Jorgelina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidade Estadual de Campinas; BrasilFil: San Martin, Luiz A. B.. Universidade Estadual de Campinas; BrasilSpringer Heidelberg2018-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/92694Freitas, Ana P. C.; del Barco, Viviana Jorgelina; San Martin, Luiz A. B.; Invariant almost complex structures on real flag manifolds; Springer Heidelberg; Annali Di Matematica Pura Ed Applicata; 197; 6; 12-2018; 1821-18440373-31141618-1891CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s10231-018-0751-yinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10231-018-0751-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:05:29Zoai:ri.conicet.gov.ar:11336/92694instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:05:30.236CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Invariant almost complex structures on real flag manifolds |
title |
Invariant almost complex structures on real flag manifolds |
spellingShingle |
Invariant almost complex structures on real flag manifolds Freitas, Ana P. C. HOMOGENEOUS MANIFOLD INVARIANT ALMOST COMPLEX STRUCTURE ISOTROPY REPRESENTATION REAL FLAG MANIFOLD |
title_short |
Invariant almost complex structures on real flag manifolds |
title_full |
Invariant almost complex structures on real flag manifolds |
title_fullStr |
Invariant almost complex structures on real flag manifolds |
title_full_unstemmed |
Invariant almost complex structures on real flag manifolds |
title_sort |
Invariant almost complex structures on real flag manifolds |
dc.creator.none.fl_str_mv |
Freitas, Ana P. C. del Barco, Viviana Jorgelina San Martin, Luiz A. B. |
author |
Freitas, Ana P. C. |
author_facet |
Freitas, Ana P. C. del Barco, Viviana Jorgelina San Martin, Luiz A. B. |
author_role |
author |
author2 |
del Barco, Viviana Jorgelina San Martin, Luiz A. B. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
HOMOGENEOUS MANIFOLD INVARIANT ALMOST COMPLEX STRUCTURE ISOTROPY REPRESENTATION REAL FLAG MANIFOLD |
topic |
HOMOGENEOUS MANIFOLD INVARIANT ALMOST COMPLEX STRUCTURE ISOTROPY REPRESENTATION REAL FLAG MANIFOLD |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this work, we study the existence of invariant almost complex structures on real flag manifolds associated to split real forms of complex simple Lie algebras. We show that, contrary to the complex case where the invariant almost complex structures are well known, some real flag manifolds do not admit such structures. We check which invariant almost complex structures are integrable and prove that only some flag manifolds of the Lie algebra C l admit complex structures. Fil: Freitas, Ana P. C.. Universidade Estadual de Campinas; Brasil Fil: del Barco, Viviana Jorgelina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidade Estadual de Campinas; Brasil Fil: San Martin, Luiz A. B.. Universidade Estadual de Campinas; Brasil |
description |
In this work, we study the existence of invariant almost complex structures on real flag manifolds associated to split real forms of complex simple Lie algebras. We show that, contrary to the complex case where the invariant almost complex structures are well known, some real flag manifolds do not admit such structures. We check which invariant almost complex structures are integrable and prove that only some flag manifolds of the Lie algebra C l admit complex structures. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/92694 Freitas, Ana P. C.; del Barco, Viviana Jorgelina; San Martin, Luiz A. B.; Invariant almost complex structures on real flag manifolds; Springer Heidelberg; Annali Di Matematica Pura Ed Applicata; 197; 6; 12-2018; 1821-1844 0373-3114 1618-1891 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/92694 |
identifier_str_mv |
Freitas, Ana P. C.; del Barco, Viviana Jorgelina; San Martin, Luiz A. B.; Invariant almost complex structures on real flag manifolds; Springer Heidelberg; Annali Di Matematica Pura Ed Applicata; 197; 6; 12-2018; 1821-1844 0373-3114 1618-1891 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s10231-018-0751-y info:eu-repo/semantics/altIdentifier/doi/10.1007/s10231-018-0751-y |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer Heidelberg |
publisher.none.fl_str_mv |
Springer Heidelberg |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613891771858944 |
score |
13.070432 |