Invariant almost complex structures on real flag manifolds

Autores
Freitas, Ana P. C.; del Barco, Viviana Jorgelina; San Martin, Luiz A. B.
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work, we study the existence of invariant almost complex structures on real flag manifolds associated to split real forms of complex simple Lie algebras. We show that, contrary to the complex case where the invariant almost complex structures are well known, some real flag manifolds do not admit such structures. We check which invariant almost complex structures are integrable and prove that only some flag manifolds of the Lie algebra C l admit complex structures.
Fil: Freitas, Ana P. C.. Universidade Estadual de Campinas; Brasil
Fil: del Barco, Viviana Jorgelina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidade Estadual de Campinas; Brasil
Fil: San Martin, Luiz A. B.. Universidade Estadual de Campinas; Brasil
Materia
HOMOGENEOUS MANIFOLD
INVARIANT ALMOST COMPLEX STRUCTURE
ISOTROPY REPRESENTATION
REAL FLAG MANIFOLD
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/92694

id CONICETDig_a4aa8ab4b7f0e185704d4d62b35764c7
oai_identifier_str oai:ri.conicet.gov.ar:11336/92694
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Invariant almost complex structures on real flag manifoldsFreitas, Ana P. C.del Barco, Viviana JorgelinaSan Martin, Luiz A. B.HOMOGENEOUS MANIFOLDINVARIANT ALMOST COMPLEX STRUCTUREISOTROPY REPRESENTATIONREAL FLAG MANIFOLDhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this work, we study the existence of invariant almost complex structures on real flag manifolds associated to split real forms of complex simple Lie algebras. We show that, contrary to the complex case where the invariant almost complex structures are well known, some real flag manifolds do not admit such structures. We check which invariant almost complex structures are integrable and prove that only some flag manifolds of the Lie algebra C l admit complex structures.Fil: Freitas, Ana P. C.. Universidade Estadual de Campinas; BrasilFil: del Barco, Viviana Jorgelina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidade Estadual de Campinas; BrasilFil: San Martin, Luiz A. B.. Universidade Estadual de Campinas; BrasilSpringer Heidelberg2018-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/92694Freitas, Ana P. C.; del Barco, Viviana Jorgelina; San Martin, Luiz A. B.; Invariant almost complex structures on real flag manifolds; Springer Heidelberg; Annali Di Matematica Pura Ed Applicata; 197; 6; 12-2018; 1821-18440373-31141618-1891CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s10231-018-0751-yinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10231-018-0751-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:05:29Zoai:ri.conicet.gov.ar:11336/92694instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:05:30.236CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Invariant almost complex structures on real flag manifolds
title Invariant almost complex structures on real flag manifolds
spellingShingle Invariant almost complex structures on real flag manifolds
Freitas, Ana P. C.
HOMOGENEOUS MANIFOLD
INVARIANT ALMOST COMPLEX STRUCTURE
ISOTROPY REPRESENTATION
REAL FLAG MANIFOLD
title_short Invariant almost complex structures on real flag manifolds
title_full Invariant almost complex structures on real flag manifolds
title_fullStr Invariant almost complex structures on real flag manifolds
title_full_unstemmed Invariant almost complex structures on real flag manifolds
title_sort Invariant almost complex structures on real flag manifolds
dc.creator.none.fl_str_mv Freitas, Ana P. C.
del Barco, Viviana Jorgelina
San Martin, Luiz A. B.
author Freitas, Ana P. C.
author_facet Freitas, Ana P. C.
del Barco, Viviana Jorgelina
San Martin, Luiz A. B.
author_role author
author2 del Barco, Viviana Jorgelina
San Martin, Luiz A. B.
author2_role author
author
dc.subject.none.fl_str_mv HOMOGENEOUS MANIFOLD
INVARIANT ALMOST COMPLEX STRUCTURE
ISOTROPY REPRESENTATION
REAL FLAG MANIFOLD
topic HOMOGENEOUS MANIFOLD
INVARIANT ALMOST COMPLEX STRUCTURE
ISOTROPY REPRESENTATION
REAL FLAG MANIFOLD
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this work, we study the existence of invariant almost complex structures on real flag manifolds associated to split real forms of complex simple Lie algebras. We show that, contrary to the complex case where the invariant almost complex structures are well known, some real flag manifolds do not admit such structures. We check which invariant almost complex structures are integrable and prove that only some flag manifolds of the Lie algebra C l admit complex structures.
Fil: Freitas, Ana P. C.. Universidade Estadual de Campinas; Brasil
Fil: del Barco, Viviana Jorgelina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidade Estadual de Campinas; Brasil
Fil: San Martin, Luiz A. B.. Universidade Estadual de Campinas; Brasil
description In this work, we study the existence of invariant almost complex structures on real flag manifolds associated to split real forms of complex simple Lie algebras. We show that, contrary to the complex case where the invariant almost complex structures are well known, some real flag manifolds do not admit such structures. We check which invariant almost complex structures are integrable and prove that only some flag manifolds of the Lie algebra C l admit complex structures.
publishDate 2018
dc.date.none.fl_str_mv 2018-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/92694
Freitas, Ana P. C.; del Barco, Viviana Jorgelina; San Martin, Luiz A. B.; Invariant almost complex structures on real flag manifolds; Springer Heidelberg; Annali Di Matematica Pura Ed Applicata; 197; 6; 12-2018; 1821-1844
0373-3114
1618-1891
CONICET Digital
CONICET
url http://hdl.handle.net/11336/92694
identifier_str_mv Freitas, Ana P. C.; del Barco, Viviana Jorgelina; San Martin, Luiz A. B.; Invariant almost complex structures on real flag manifolds; Springer Heidelberg; Annali Di Matematica Pura Ed Applicata; 197; 6; 12-2018; 1821-1844
0373-3114
1618-1891
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s10231-018-0751-y
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10231-018-0751-y
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer Heidelberg
publisher.none.fl_str_mv Springer Heidelberg
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613891771858944
score 13.070432