Stiefel and Grassmann manifolds in quantum chemistry
- Autores
- Chiumiento, Eduardo Hernán; Melgaard, M.
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We establish geometric properties of Stiefel and Grassmann manifolds which arise in relation to Slater type variational spaces in many-particle Hartree-Fock theory and beyond. In particular, we prove that they are analytic homogeneous spaces and submanifolds of the space of bounded operators on the single-particle Hilbert space. As a by-product we obtain that they are complete Finsler manifolds. These geometric properties underpin state-of-the-art results on the existence of solutions to Hartree-Fock type equations.
Facultad de Ciencias Exactas - Materia
-
Matemática
Banach-Lie group
Finsler manifold
Homogeneous space
Variational spaces in Hartree-Fock theory - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/84703
Ver los metadatos del registro completo
id |
SEDICI_00844758feab1779c10ceaeaeeb75d10 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/84703 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Stiefel and Grassmann manifolds in quantum chemistryChiumiento, Eduardo HernánMelgaard, M.MatemáticaBanach-Lie groupFinsler manifoldHomogeneous spaceVariational spaces in Hartree-Fock theoryWe establish geometric properties of Stiefel and Grassmann manifolds which arise in relation to Slater type variational spaces in many-particle Hartree-Fock theory and beyond. In particular, we prove that they are analytic homogeneous spaces and submanifolds of the space of bounded operators on the single-particle Hilbert space. As a by-product we obtain that they are complete Finsler manifolds. These geometric properties underpin state-of-the-art results on the existence of solutions to Hartree-Fock type equations.Facultad de Ciencias Exactas2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1866-1881http://sedici.unlp.edu.ar/handle/10915/84703enginfo:eu-repo/semantics/altIdentifier/issn/0393-0440info:eu-repo/semantics/altIdentifier/doi/10.1016/j.geomphys.2012.04.005info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:56:52Zoai:sedici.unlp.edu.ar:10915/84703Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:56:53.101SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Stiefel and Grassmann manifolds in quantum chemistry |
title |
Stiefel and Grassmann manifolds in quantum chemistry |
spellingShingle |
Stiefel and Grassmann manifolds in quantum chemistry Chiumiento, Eduardo Hernán Matemática Banach-Lie group Finsler manifold Homogeneous space Variational spaces in Hartree-Fock theory |
title_short |
Stiefel and Grassmann manifolds in quantum chemistry |
title_full |
Stiefel and Grassmann manifolds in quantum chemistry |
title_fullStr |
Stiefel and Grassmann manifolds in quantum chemistry |
title_full_unstemmed |
Stiefel and Grassmann manifolds in quantum chemistry |
title_sort |
Stiefel and Grassmann manifolds in quantum chemistry |
dc.creator.none.fl_str_mv |
Chiumiento, Eduardo Hernán Melgaard, M. |
author |
Chiumiento, Eduardo Hernán |
author_facet |
Chiumiento, Eduardo Hernán Melgaard, M. |
author_role |
author |
author2 |
Melgaard, M. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Matemática Banach-Lie group Finsler manifold Homogeneous space Variational spaces in Hartree-Fock theory |
topic |
Matemática Banach-Lie group Finsler manifold Homogeneous space Variational spaces in Hartree-Fock theory |
dc.description.none.fl_txt_mv |
We establish geometric properties of Stiefel and Grassmann manifolds which arise in relation to Slater type variational spaces in many-particle Hartree-Fock theory and beyond. In particular, we prove that they are analytic homogeneous spaces and submanifolds of the space of bounded operators on the single-particle Hilbert space. As a by-product we obtain that they are complete Finsler manifolds. These geometric properties underpin state-of-the-art results on the existence of solutions to Hartree-Fock type equations. Facultad de Ciencias Exactas |
description |
We establish geometric properties of Stiefel and Grassmann manifolds which arise in relation to Slater type variational spaces in many-particle Hartree-Fock theory and beyond. In particular, we prove that they are analytic homogeneous spaces and submanifolds of the space of bounded operators on the single-particle Hilbert space. As a by-product we obtain that they are complete Finsler manifolds. These geometric properties underpin state-of-the-art results on the existence of solutions to Hartree-Fock type equations. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/84703 |
url |
http://sedici.unlp.edu.ar/handle/10915/84703 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0393-0440 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.geomphys.2012.04.005 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 1866-1881 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846783178009739264 |
score |
12.723966 |