Squares and their centers
- Autores
- Keleti, Tamas; Nagy, Daniel; Shmerkin, Pablo Sebastian
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the relationship between the size of two sets B, S ⊂ R2, when B contains either the whole boundary or the four vertices of a square with axes-parallel sides and center in every point of S. Size refers to cardinality, Hausdorff dimension, packing dimension, or upper or lower box dimension. Perhaps surprisingly, the results vary depending on the notion of size under consideration. For example, we construct a compact set B of Hausdorff dimension 1 which contains the boundary of an axes-parallel square with center in every point in [0, 1]2, prove that such a B must have packing and lower box dimension at least 7/4, and show by example that this is sharp. For more general sets of centers, the answers for packing and box counting dimensions also differ. These problems are inspired by the analogous problems for circles that were investigated by Bourgain, Marstrand and Wolff, among others.
Fil: Keleti, Tamas. Eötvös Loránd University; Hungría
Fil: Nagy, Daniel. Eötvös University; Argentina
Fil: Shmerkin, Pablo Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina - Materia
-
Squares
Square Vertices
Hausdorff dimension
box dimension
packing dimension - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/99274
Ver los metadatos del registro completo
id |
CONICETDig_a401bcf7335d7d2a3337ab3e8081321d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/99274 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Squares and their centersKeleti, TamasNagy, DanielShmerkin, Pablo SebastianSquaresSquare VerticesHausdorff dimensionbox dimensionpacking dimensionhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the relationship between the size of two sets B, S ⊂ R2, when B contains either the whole boundary or the four vertices of a square with axes-parallel sides and center in every point of S. Size refers to cardinality, Hausdorff dimension, packing dimension, or upper or lower box dimension. Perhaps surprisingly, the results vary depending on the notion of size under consideration. For example, we construct a compact set B of Hausdorff dimension 1 which contains the boundary of an axes-parallel square with center in every point in [0, 1]2, prove that such a B must have packing and lower box dimension at least 7/4, and show by example that this is sharp. For more general sets of centers, the answers for packing and box counting dimensions also differ. These problems are inspired by the analogous problems for circles that were investigated by Bourgain, Marstrand and Wolff, among others.Fil: Keleti, Tamas. Eötvös Loránd University; HungríaFil: Nagy, Daniel. Eötvös University; ArgentinaFil: Shmerkin, Pablo Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; ArgentinaSpringer2018-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/99274Keleti, Tamas; Nagy, Daniel; Shmerkin, Pablo Sebastian; Squares and their centers; Springer; Journal d'Analyse Mathématique; 134; 2; 2-2018; 643-6690021-7670CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11854-018-0021-3info:eu-repo/semantics/altIdentifier/doi/10.1007/s11854-018-0021-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:33Zoai:ri.conicet.gov.ar:11336/99274instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:33.709CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Squares and their centers |
title |
Squares and their centers |
spellingShingle |
Squares and their centers Keleti, Tamas Squares Square Vertices Hausdorff dimension box dimension packing dimension |
title_short |
Squares and their centers |
title_full |
Squares and their centers |
title_fullStr |
Squares and their centers |
title_full_unstemmed |
Squares and their centers |
title_sort |
Squares and their centers |
dc.creator.none.fl_str_mv |
Keleti, Tamas Nagy, Daniel Shmerkin, Pablo Sebastian |
author |
Keleti, Tamas |
author_facet |
Keleti, Tamas Nagy, Daniel Shmerkin, Pablo Sebastian |
author_role |
author |
author2 |
Nagy, Daniel Shmerkin, Pablo Sebastian |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Squares Square Vertices Hausdorff dimension box dimension packing dimension |
topic |
Squares Square Vertices Hausdorff dimension box dimension packing dimension |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the relationship between the size of two sets B, S ⊂ R2, when B contains either the whole boundary or the four vertices of a square with axes-parallel sides and center in every point of S. Size refers to cardinality, Hausdorff dimension, packing dimension, or upper or lower box dimension. Perhaps surprisingly, the results vary depending on the notion of size under consideration. For example, we construct a compact set B of Hausdorff dimension 1 which contains the boundary of an axes-parallel square with center in every point in [0, 1]2, prove that such a B must have packing and lower box dimension at least 7/4, and show by example that this is sharp. For more general sets of centers, the answers for packing and box counting dimensions also differ. These problems are inspired by the analogous problems for circles that were investigated by Bourgain, Marstrand and Wolff, among others. Fil: Keleti, Tamas. Eötvös Loránd University; Hungría Fil: Nagy, Daniel. Eötvös University; Argentina Fil: Shmerkin, Pablo Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina |
description |
We study the relationship between the size of two sets B, S ⊂ R2, when B contains either the whole boundary or the four vertices of a square with axes-parallel sides and center in every point of S. Size refers to cardinality, Hausdorff dimension, packing dimension, or upper or lower box dimension. Perhaps surprisingly, the results vary depending on the notion of size under consideration. For example, we construct a compact set B of Hausdorff dimension 1 which contains the boundary of an axes-parallel square with center in every point in [0, 1]2, prove that such a B must have packing and lower box dimension at least 7/4, and show by example that this is sharp. For more general sets of centers, the answers for packing and box counting dimensions also differ. These problems are inspired by the analogous problems for circles that were investigated by Bourgain, Marstrand and Wolff, among others. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/99274 Keleti, Tamas; Nagy, Daniel; Shmerkin, Pablo Sebastian; Squares and their centers; Springer; Journal d'Analyse Mathématique; 134; 2; 2-2018; 643-669 0021-7670 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/99274 |
identifier_str_mv |
Keleti, Tamas; Nagy, Daniel; Shmerkin, Pablo Sebastian; Squares and their centers; Springer; Journal d'Analyse Mathématique; 134; 2; 2-2018; 643-669 0021-7670 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11854-018-0021-3 info:eu-repo/semantics/altIdentifier/doi/10.1007/s11854-018-0021-3 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/zip application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613219112452096 |
score |
13.070432 |