New bounds on the dimensions of planar distance sets
- Autores
- Keleti, Tamas; Shmerkin, Pablo Sebastian
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We prove new bounds on the dimensions of distance sets and pinned distance sets of planar sets. Among other results, we show that if A ⊂ R2 is a Borel set of Hausdorff dimension s > 1, then its distance set has Hausdorff dimension at least 37/54 ≈ 0.685. Moreover, if s ∈ (1, 3/2], then outside of a set of exceptional y of Hausdorff dimension at most 1, the pinned distance set {|x − y| : x ∈ A} has Hausdorff dimension ≥ 2 3 s and packing dimension at least 1 4 (1+s+3s(2 − s)) ≥ 0.933. These estimates improve upon the existing ones by Bourgain, Wolff, Peres–Schlag and Iosevich–Liu for sets of Hausdorff dimension > 1. Our proof uses a multi-scale decomposition of measures in which, unlike previous works, we are able to choose the scales subject to certain constrains. This leads to a combinatorial problem, which is a key new ingredient of our approach, and which we solve completely by optimizing certain variation of Lipschitz functions.
Fil: Keleti, Tamas. Eötvös University; Argentina
Fil: Shmerkin, Pablo Sebastian. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
DISTANCE SETS
FALCONER’S PROBLEM
HAUSDORFF DIMENSION
LIPSCHITZ FUNCTIONS
PACKING DIMENSION
PINNED DISTANCE SETS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/135439
Ver los metadatos del registro completo
id |
CONICETDig_aed81d9840f98f71002ce301dc5ff47c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/135439 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
New bounds on the dimensions of planar distance setsKeleti, TamasShmerkin, Pablo SebastianDISTANCE SETSFALCONER’S PROBLEMHAUSDORFF DIMENSIONLIPSCHITZ FUNCTIONSPACKING DIMENSIONPINNED DISTANCE SETShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove new bounds on the dimensions of distance sets and pinned distance sets of planar sets. Among other results, we show that if A ⊂ R2 is a Borel set of Hausdorff dimension s > 1, then its distance set has Hausdorff dimension at least 37/54 ≈ 0.685. Moreover, if s ∈ (1, 3/2], then outside of a set of exceptional y of Hausdorff dimension at most 1, the pinned distance set {|x − y| : x ∈ A} has Hausdorff dimension ≥ 2 3 s and packing dimension at least 1 4 (1+s+3s(2 − s)) ≥ 0.933. These estimates improve upon the existing ones by Bourgain, Wolff, Peres–Schlag and Iosevich–Liu for sets of Hausdorff dimension > 1. Our proof uses a multi-scale decomposition of measures in which, unlike previous works, we are able to choose the scales subject to certain constrains. This leads to a combinatorial problem, which is a key new ingredient of our approach, and which we solve completely by optimizing certain variation of Lipschitz functions.Fil: Keleti, Tamas. Eötvös University; ArgentinaFil: Shmerkin, Pablo Sebastian. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaBirkhauser Verlag Ag2019-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/135439Keleti, Tamas; Shmerkin, Pablo Sebastian; New bounds on the dimensions of planar distance sets; Birkhauser Verlag Ag; Geometric and Functional Analysis; 29; 6; 7-2019; 1886-19481016-443X1420-8970CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00039-019-00500-9info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00039-019-00500-9info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1801.08745info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:28Zoai:ri.conicet.gov.ar:11336/135439instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:29.241CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
New bounds on the dimensions of planar distance sets |
title |
New bounds on the dimensions of planar distance sets |
spellingShingle |
New bounds on the dimensions of planar distance sets Keleti, Tamas DISTANCE SETS FALCONER’S PROBLEM HAUSDORFF DIMENSION LIPSCHITZ FUNCTIONS PACKING DIMENSION PINNED DISTANCE SETS |
title_short |
New bounds on the dimensions of planar distance sets |
title_full |
New bounds on the dimensions of planar distance sets |
title_fullStr |
New bounds on the dimensions of planar distance sets |
title_full_unstemmed |
New bounds on the dimensions of planar distance sets |
title_sort |
New bounds on the dimensions of planar distance sets |
dc.creator.none.fl_str_mv |
Keleti, Tamas Shmerkin, Pablo Sebastian |
author |
Keleti, Tamas |
author_facet |
Keleti, Tamas Shmerkin, Pablo Sebastian |
author_role |
author |
author2 |
Shmerkin, Pablo Sebastian |
author2_role |
author |
dc.subject.none.fl_str_mv |
DISTANCE SETS FALCONER’S PROBLEM HAUSDORFF DIMENSION LIPSCHITZ FUNCTIONS PACKING DIMENSION PINNED DISTANCE SETS |
topic |
DISTANCE SETS FALCONER’S PROBLEM HAUSDORFF DIMENSION LIPSCHITZ FUNCTIONS PACKING DIMENSION PINNED DISTANCE SETS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We prove new bounds on the dimensions of distance sets and pinned distance sets of planar sets. Among other results, we show that if A ⊂ R2 is a Borel set of Hausdorff dimension s > 1, then its distance set has Hausdorff dimension at least 37/54 ≈ 0.685. Moreover, if s ∈ (1, 3/2], then outside of a set of exceptional y of Hausdorff dimension at most 1, the pinned distance set {|x − y| : x ∈ A} has Hausdorff dimension ≥ 2 3 s and packing dimension at least 1 4 (1+s+3s(2 − s)) ≥ 0.933. These estimates improve upon the existing ones by Bourgain, Wolff, Peres–Schlag and Iosevich–Liu for sets of Hausdorff dimension > 1. Our proof uses a multi-scale decomposition of measures in which, unlike previous works, we are able to choose the scales subject to certain constrains. This leads to a combinatorial problem, which is a key new ingredient of our approach, and which we solve completely by optimizing certain variation of Lipschitz functions. Fil: Keleti, Tamas. Eötvös University; Argentina Fil: Shmerkin, Pablo Sebastian. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We prove new bounds on the dimensions of distance sets and pinned distance sets of planar sets. Among other results, we show that if A ⊂ R2 is a Borel set of Hausdorff dimension s > 1, then its distance set has Hausdorff dimension at least 37/54 ≈ 0.685. Moreover, if s ∈ (1, 3/2], then outside of a set of exceptional y of Hausdorff dimension at most 1, the pinned distance set {|x − y| : x ∈ A} has Hausdorff dimension ≥ 2 3 s and packing dimension at least 1 4 (1+s+3s(2 − s)) ≥ 0.933. These estimates improve upon the existing ones by Bourgain, Wolff, Peres–Schlag and Iosevich–Liu for sets of Hausdorff dimension > 1. Our proof uses a multi-scale decomposition of measures in which, unlike previous works, we are able to choose the scales subject to certain constrains. This leads to a combinatorial problem, which is a key new ingredient of our approach, and which we solve completely by optimizing certain variation of Lipschitz functions. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/135439 Keleti, Tamas; Shmerkin, Pablo Sebastian; New bounds on the dimensions of planar distance sets; Birkhauser Verlag Ag; Geometric and Functional Analysis; 29; 6; 7-2019; 1886-1948 1016-443X 1420-8970 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/135439 |
identifier_str_mv |
Keleti, Tamas; Shmerkin, Pablo Sebastian; New bounds on the dimensions of planar distance sets; Birkhauser Verlag Ag; Geometric and Functional Analysis; 29; 6; 7-2019; 1886-1948 1016-443X 1420-8970 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00039-019-00500-9 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00039-019-00500-9 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1801.08745 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Birkhauser Verlag Ag |
publisher.none.fl_str_mv |
Birkhauser Verlag Ag |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269228401426432 |
score |
13.13397 |