Dimension functions of Cantor sets

Autores
Garcia, I.; Molter, U.; Scotto, R.
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We estimate the packing measure of Cantor sets associated to nonincreasing sequences through their decay. This result, dual to one obtained by Besicovitch and Taylor, allows us to characterize the dimension functions recently found by Cabrelli et al for these sets. © 2007 American Mathematical Society.
Fil:Molter, U. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Proc. Am. Math. Soc. 2007;135(10):3151-3161
Materia
Cantor sets
Dimension function
Hausdorff dimension
Packing measure
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_00029939_v135_n10_p3151_Garcia

id BDUBAFCEN_7d8e37ce70742b0a6549c1830cad1715
oai_identifier_str paperaa:paper_00029939_v135_n10_p3151_Garcia
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Dimension functions of Cantor setsGarcia, I.Molter, U.Scotto, R.Cantor setsDimension functionHausdorff dimensionPacking measureWe estimate the packing measure of Cantor sets associated to nonincreasing sequences through their decay. This result, dual to one obtained by Besicovitch and Taylor, allows us to characterize the dimension functions recently found by Cabrelli et al for these sets. © 2007 American Mathematical Society.Fil:Molter, U. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2007info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00029939_v135_n10_p3151_GarciaProc. Am. Math. Soc. 2007;135(10):3151-3161reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-18T10:09:07Zpaperaa:paper_00029939_v135_n10_p3151_GarciaInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-18 10:09:08.899Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Dimension functions of Cantor sets
title Dimension functions of Cantor sets
spellingShingle Dimension functions of Cantor sets
Garcia, I.
Cantor sets
Dimension function
Hausdorff dimension
Packing measure
title_short Dimension functions of Cantor sets
title_full Dimension functions of Cantor sets
title_fullStr Dimension functions of Cantor sets
title_full_unstemmed Dimension functions of Cantor sets
title_sort Dimension functions of Cantor sets
dc.creator.none.fl_str_mv Garcia, I.
Molter, U.
Scotto, R.
author Garcia, I.
author_facet Garcia, I.
Molter, U.
Scotto, R.
author_role author
author2 Molter, U.
Scotto, R.
author2_role author
author
dc.subject.none.fl_str_mv Cantor sets
Dimension function
Hausdorff dimension
Packing measure
topic Cantor sets
Dimension function
Hausdorff dimension
Packing measure
dc.description.none.fl_txt_mv We estimate the packing measure of Cantor sets associated to nonincreasing sequences through their decay. This result, dual to one obtained by Besicovitch and Taylor, allows us to characterize the dimension functions recently found by Cabrelli et al for these sets. © 2007 American Mathematical Society.
Fil:Molter, U. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description We estimate the packing measure of Cantor sets associated to nonincreasing sequences through their decay. This result, dual to one obtained by Besicovitch and Taylor, allows us to characterize the dimension functions recently found by Cabrelli et al for these sets. © 2007 American Mathematical Society.
publishDate 2007
dc.date.none.fl_str_mv 2007
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_00029939_v135_n10_p3151_Garcia
url http://hdl.handle.net/20.500.12110/paper_00029939_v135_n10_p3151_Garcia
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Proc. Am. Math. Soc. 2007;135(10):3151-3161
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1843608733081403392
score 13.001348