On the dimensions of a family of overlapping self-affine carpets
- Autores
- Fraser, Jonathan; Shmerkin, Pablo Sebastian
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider the dimensions of a family of self-affine sets related to the Bedford-McMullen carpets. In particular, we fix a Bedford-McMullen system and then randomise the translation vectors with the stipulation that the column structure is preserved. As such, we maintain one of the key features in the Bedford-McMullen set up in that alignment causes the dimensions to drop from the affinity dimension. We compute the Hausdorff, packing and box dimensions outside of a small set of exceptional translations, and also for some explicit translations even in the presence of overlapping. Our results rely on, and can be seen as a partial extension of, M. Hochman´s recent work on the dimensions of self-similar sets and measures.
Fil: Fraser, Jonathan. University of Manchester; Reino Unido
Fil: Shmerkin, Pablo Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina - Materia
-
SELF-AFFINE CARPET
HAUSDORFF DIMENSION
PACKING DIMENSION
BOX DIMENSION
OVERLAPS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/53255
Ver los metadatos del registro completo
id |
CONICETDig_551d56ce8d755d718893d831fe1824b1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/53255 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the dimensions of a family of overlapping self-affine carpetsFraser, JonathanShmerkin, Pablo SebastianSELF-AFFINE CARPETHAUSDORFF DIMENSIONPACKING DIMENSIONBOX DIMENSIONOVERLAPShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider the dimensions of a family of self-affine sets related to the Bedford-McMullen carpets. In particular, we fix a Bedford-McMullen system and then randomise the translation vectors with the stipulation that the column structure is preserved. As such, we maintain one of the key features in the Bedford-McMullen set up in that alignment causes the dimensions to drop from the affinity dimension. We compute the Hausdorff, packing and box dimensions outside of a small set of exceptional translations, and also for some explicit translations even in the presence of overlapping. Our results rely on, and can be seen as a partial extension of, M. Hochman´s recent work on the dimensions of self-similar sets and measures.Fil: Fraser, Jonathan. University of Manchester; Reino UnidoFil: Shmerkin, Pablo Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; ArgentinaCambridge University Press2016-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/53255Fraser, Jonathan; Shmerkin, Pablo Sebastian; On the dimensions of a family of overlapping self-affine carpets; Cambridge University Press; Ergodic Theory And Dynamical Systems; 36; 8; 12-2016; 2463-24810143-3857CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/ergodic-theory-and-dynamical-systems/article/div-classtitleon-the-dimensions-of-a-family-of-overlapping-self-affine-carpetsdiv/1D8911F0FA764104328BC41A235603D5info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:44:46Zoai:ri.conicet.gov.ar:11336/53255instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:44:47.064CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the dimensions of a family of overlapping self-affine carpets |
title |
On the dimensions of a family of overlapping self-affine carpets |
spellingShingle |
On the dimensions of a family of overlapping self-affine carpets Fraser, Jonathan SELF-AFFINE CARPET HAUSDORFF DIMENSION PACKING DIMENSION BOX DIMENSION OVERLAPS |
title_short |
On the dimensions of a family of overlapping self-affine carpets |
title_full |
On the dimensions of a family of overlapping self-affine carpets |
title_fullStr |
On the dimensions of a family of overlapping self-affine carpets |
title_full_unstemmed |
On the dimensions of a family of overlapping self-affine carpets |
title_sort |
On the dimensions of a family of overlapping self-affine carpets |
dc.creator.none.fl_str_mv |
Fraser, Jonathan Shmerkin, Pablo Sebastian |
author |
Fraser, Jonathan |
author_facet |
Fraser, Jonathan Shmerkin, Pablo Sebastian |
author_role |
author |
author2 |
Shmerkin, Pablo Sebastian |
author2_role |
author |
dc.subject.none.fl_str_mv |
SELF-AFFINE CARPET HAUSDORFF DIMENSION PACKING DIMENSION BOX DIMENSION OVERLAPS |
topic |
SELF-AFFINE CARPET HAUSDORFF DIMENSION PACKING DIMENSION BOX DIMENSION OVERLAPS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We consider the dimensions of a family of self-affine sets related to the Bedford-McMullen carpets. In particular, we fix a Bedford-McMullen system and then randomise the translation vectors with the stipulation that the column structure is preserved. As such, we maintain one of the key features in the Bedford-McMullen set up in that alignment causes the dimensions to drop from the affinity dimension. We compute the Hausdorff, packing and box dimensions outside of a small set of exceptional translations, and also for some explicit translations even in the presence of overlapping. Our results rely on, and can be seen as a partial extension of, M. Hochman´s recent work on the dimensions of self-similar sets and measures. Fil: Fraser, Jonathan. University of Manchester; Reino Unido Fil: Shmerkin, Pablo Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina |
description |
We consider the dimensions of a family of self-affine sets related to the Bedford-McMullen carpets. In particular, we fix a Bedford-McMullen system and then randomise the translation vectors with the stipulation that the column structure is preserved. As such, we maintain one of the key features in the Bedford-McMullen set up in that alignment causes the dimensions to drop from the affinity dimension. We compute the Hausdorff, packing and box dimensions outside of a small set of exceptional translations, and also for some explicit translations even in the presence of overlapping. Our results rely on, and can be seen as a partial extension of, M. Hochman´s recent work on the dimensions of self-similar sets and measures. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/53255 Fraser, Jonathan; Shmerkin, Pablo Sebastian; On the dimensions of a family of overlapping self-affine carpets; Cambridge University Press; Ergodic Theory And Dynamical Systems; 36; 8; 12-2016; 2463-2481 0143-3857 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/53255 |
identifier_str_mv |
Fraser, Jonathan; Shmerkin, Pablo Sebastian; On the dimensions of a family of overlapping self-affine carpets; Cambridge University Press; Ergodic Theory And Dynamical Systems; 36; 8; 12-2016; 2463-2481 0143-3857 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/ergodic-theory-and-dynamical-systems/article/div-classtitleon-the-dimensions-of-a-family-of-overlapping-self-affine-carpetsdiv/1D8911F0FA764104328BC41A235603D5 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/zip application/pdf |
dc.publisher.none.fl_str_mv |
Cambridge University Press |
publisher.none.fl_str_mv |
Cambridge University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614485821620224 |
score |
13.070432 |