Classifying cantor sets by their fractal dimensions

Autores
Cabrelli, Carlos; Hare, Kathryn E.; Molter, Ursula Maria
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this article we study Cantor sets defined by monotone sequences, in the sense of Besicovich and Taylor. We classify these Cantor sets in terms of their h-Hausdorff and h-packing measures, for the family of dimension functions h, and characterize this classification in terms of the underlying sequences.
Fil: Cabrelli, Carlos. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Hare, Kathryn E.. University of Waterloo; Canadá
Fil: Molter, Ursula Maria. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
CANTOR SET
CUT-OUT SET
HAUSDORFF DIMENSION
PACKING DIMENSION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/68515

id CONICETDig_4c95ff55c5d9415cf72c0ab20b01d53d
oai_identifier_str oai:ri.conicet.gov.ar:11336/68515
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Classifying cantor sets by their fractal dimensionsCabrelli, CarlosHare, Kathryn E.Molter, Ursula MariaCANTOR SETCUT-OUT SETHAUSDORFF DIMENSIONPACKING DIMENSIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this article we study Cantor sets defined by monotone sequences, in the sense of Besicovich and Taylor. We classify these Cantor sets in terms of their h-Hausdorff and h-packing measures, for the family of dimension functions h, and characterize this classification in terms of the underlying sequences.Fil: Cabrelli, Carlos. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Hare, Kathryn E.. University of Waterloo; CanadáFil: Molter, Ursula Maria. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Mathematical Society2010-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/68515Cabrelli, Carlos; Hare, Kathryn E.; Molter, Ursula Maria; Classifying cantor sets by their fractal dimensions; American Mathematical Society; Proceedings of the American Mathematical Society; 138; 11; 11-2010; 3965-39740002-9939CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0905.1980info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2010-138-11/S0002-9939-2010-10396-9/info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9939-2010-10396-9info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:13:25Zoai:ri.conicet.gov.ar:11336/68515instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:13:25.592CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Classifying cantor sets by their fractal dimensions
title Classifying cantor sets by their fractal dimensions
spellingShingle Classifying cantor sets by their fractal dimensions
Cabrelli, Carlos
CANTOR SET
CUT-OUT SET
HAUSDORFF DIMENSION
PACKING DIMENSION
title_short Classifying cantor sets by their fractal dimensions
title_full Classifying cantor sets by their fractal dimensions
title_fullStr Classifying cantor sets by their fractal dimensions
title_full_unstemmed Classifying cantor sets by their fractal dimensions
title_sort Classifying cantor sets by their fractal dimensions
dc.creator.none.fl_str_mv Cabrelli, Carlos
Hare, Kathryn E.
Molter, Ursula Maria
author Cabrelli, Carlos
author_facet Cabrelli, Carlos
Hare, Kathryn E.
Molter, Ursula Maria
author_role author
author2 Hare, Kathryn E.
Molter, Ursula Maria
author2_role author
author
dc.subject.none.fl_str_mv CANTOR SET
CUT-OUT SET
HAUSDORFF DIMENSION
PACKING DIMENSION
topic CANTOR SET
CUT-OUT SET
HAUSDORFF DIMENSION
PACKING DIMENSION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this article we study Cantor sets defined by monotone sequences, in the sense of Besicovich and Taylor. We classify these Cantor sets in terms of their h-Hausdorff and h-packing measures, for the family of dimension functions h, and characterize this classification in terms of the underlying sequences.
Fil: Cabrelli, Carlos. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Hare, Kathryn E.. University of Waterloo; Canadá
Fil: Molter, Ursula Maria. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description In this article we study Cantor sets defined by monotone sequences, in the sense of Besicovich and Taylor. We classify these Cantor sets in terms of their h-Hausdorff and h-packing measures, for the family of dimension functions h, and characterize this classification in terms of the underlying sequences.
publishDate 2010
dc.date.none.fl_str_mv 2010-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/68515
Cabrelli, Carlos; Hare, Kathryn E.; Molter, Ursula Maria; Classifying cantor sets by their fractal dimensions; American Mathematical Society; Proceedings of the American Mathematical Society; 138; 11; 11-2010; 3965-3974
0002-9939
CONICET Digital
CONICET
url http://hdl.handle.net/11336/68515
identifier_str_mv Cabrelli, Carlos; Hare, Kathryn E.; Molter, Ursula Maria; Classifying cantor sets by their fractal dimensions; American Mathematical Society; Proceedings of the American Mathematical Society; 138; 11; 11-2010; 3965-3974
0002-9939
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0905.1980
info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2010-138-11/S0002-9939-2010-10396-9/
info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9939-2010-10396-9
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Mathematical Society
publisher.none.fl_str_mv American Mathematical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980708512956416
score 12.993085