A Robust Methodology for the Sensor Fault Detection and Classification of Systematic Observation Errors
- Autores
- Llanos, Claudia Elizabeth; Sanchez, Mabel Cristina; Maronna, Ricardo Antonio
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Robust Data Reconciliation enhances the quality of variable estimates when the data set contains a moderate proportion of atypical observations. But if systematic errors that persist in time, i.e. biases and drifts, are not detected, the break down point of the estimates is exceeded and results get worse. In this work, a new methodology based on the concepts of Robust Statistics is presented to deal with this problem. The strategy computes robust variable estimates, classifies the systematic measurement errors, and provides corrective actions to avoid the detrimental effect of biases and drifts until the sensor is repaired. The performance of the methodology is evaluated for the steady state operation of linear and non-linear benchmarks. Results demonstrate that its use significantly improves the estimates accuracy
Fil: Llanos, Claudia Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Sanchez, Mabel Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Maronna, Ricardo Antonio. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina - Materia
-
Data Reconciliation
Robust Statistics
Measurement Errors - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/43002
Ver los metadatos del registro completo
id |
CONICETDig_a2c465d1adb336fdac55a1da7aeff987 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/43002 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Robust Methodology for the Sensor Fault Detection and Classification of Systematic Observation ErrorsLlanos, Claudia ElizabethSanchez, Mabel CristinaMaronna, Ricardo AntonioData ReconciliationRobust StatisticsMeasurement Errorshttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Robust Data Reconciliation enhances the quality of variable estimates when the data set contains a moderate proportion of atypical observations. But if systematic errors that persist in time, i.e. biases and drifts, are not detected, the break down point of the estimates is exceeded and results get worse. In this work, a new methodology based on the concepts of Robust Statistics is presented to deal with this problem. The strategy computes robust variable estimates, classifies the systematic measurement errors, and provides corrective actions to avoid the detrimental effect of biases and drifts until the sensor is repaired. The performance of the methodology is evaluated for the steady state operation of linear and non-linear benchmarks. Results demonstrate that its use significantly improves the estimates accuracyFil: Llanos, Claudia Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Sanchez, Mabel Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Maronna, Ricardo Antonio. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaElsevier Science2017-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/43002Llanos, Claudia Elizabeth; Sanchez, Mabel Cristina; Maronna, Ricardo Antonio; A Robust Methodology for the Sensor Fault Detection and Classification of Systematic Observation Errors; Elsevier Science; Computer Aided Chemical Engineering; 40; 7-2017; 1525-15301570-7946CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/B978-0-444-63965-3.50256-7info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/B9780444639653502567info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:41:44Zoai:ri.conicet.gov.ar:11336/43002instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:41:45.293CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Robust Methodology for the Sensor Fault Detection and Classification of Systematic Observation Errors |
title |
A Robust Methodology for the Sensor Fault Detection and Classification of Systematic Observation Errors |
spellingShingle |
A Robust Methodology for the Sensor Fault Detection and Classification of Systematic Observation Errors Llanos, Claudia Elizabeth Data Reconciliation Robust Statistics Measurement Errors |
title_short |
A Robust Methodology for the Sensor Fault Detection and Classification of Systematic Observation Errors |
title_full |
A Robust Methodology for the Sensor Fault Detection and Classification of Systematic Observation Errors |
title_fullStr |
A Robust Methodology for the Sensor Fault Detection and Classification of Systematic Observation Errors |
title_full_unstemmed |
A Robust Methodology for the Sensor Fault Detection and Classification of Systematic Observation Errors |
title_sort |
A Robust Methodology for the Sensor Fault Detection and Classification of Systematic Observation Errors |
dc.creator.none.fl_str_mv |
Llanos, Claudia Elizabeth Sanchez, Mabel Cristina Maronna, Ricardo Antonio |
author |
Llanos, Claudia Elizabeth |
author_facet |
Llanos, Claudia Elizabeth Sanchez, Mabel Cristina Maronna, Ricardo Antonio |
author_role |
author |
author2 |
Sanchez, Mabel Cristina Maronna, Ricardo Antonio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Data Reconciliation Robust Statistics Measurement Errors |
topic |
Data Reconciliation Robust Statistics Measurement Errors |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Robust Data Reconciliation enhances the quality of variable estimates when the data set contains a moderate proportion of atypical observations. But if systematic errors that persist in time, i.e. biases and drifts, are not detected, the break down point of the estimates is exceeded and results get worse. In this work, a new methodology based on the concepts of Robust Statistics is presented to deal with this problem. The strategy computes robust variable estimates, classifies the systematic measurement errors, and provides corrective actions to avoid the detrimental effect of biases and drifts until the sensor is repaired. The performance of the methodology is evaluated for the steady state operation of linear and non-linear benchmarks. Results demonstrate that its use significantly improves the estimates accuracy Fil: Llanos, Claudia Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina Fil: Sanchez, Mabel Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina Fil: Maronna, Ricardo Antonio. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina |
description |
Robust Data Reconciliation enhances the quality of variable estimates when the data set contains a moderate proportion of atypical observations. But if systematic errors that persist in time, i.e. biases and drifts, are not detected, the break down point of the estimates is exceeded and results get worse. In this work, a new methodology based on the concepts of Robust Statistics is presented to deal with this problem. The strategy computes robust variable estimates, classifies the systematic measurement errors, and provides corrective actions to avoid the detrimental effect of biases and drifts until the sensor is repaired. The performance of the methodology is evaluated for the steady state operation of linear and non-linear benchmarks. Results demonstrate that its use significantly improves the estimates accuracy |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/43002 Llanos, Claudia Elizabeth; Sanchez, Mabel Cristina; Maronna, Ricardo Antonio; A Robust Methodology for the Sensor Fault Detection and Classification of Systematic Observation Errors; Elsevier Science; Computer Aided Chemical Engineering; 40; 7-2017; 1525-1530 1570-7946 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/43002 |
identifier_str_mv |
Llanos, Claudia Elizabeth; Sanchez, Mabel Cristina; Maronna, Ricardo Antonio; A Robust Methodology for the Sensor Fault Detection and Classification of Systematic Observation Errors; Elsevier Science; Computer Aided Chemical Engineering; 40; 7-2017; 1525-1530 1570-7946 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/B978-0-444-63965-3.50256-7 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/B9780444639653502567 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082916025630720 |
score |
13.22299 |