Robust Estimators for Data Reconciliation
- Autores
- Llanos, Claudia Elizabeth; Sanchez, Mabel Cristina; Maronna, Ricardo Antonio
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work, a comparative performance analysis of robust data reconciliation strategies is presented. The study involves two procedures based on the biweight function and three estimation techniques that use the Welsh, quasi-weighted least squares, and correntropy M-estimators. The aforementioned functions are selected for comparative purposes because their use in the data reconciliation literature has appeared during the past decade. All procedures are properly tuned to have the same estimation and gross error detection/identification capabilities under the ideal distribution. Different measurement models are systematically taken into account, and results are analyzed considering both performance measures (average number of type I errors, global performance, mean square error) and computational load. The comparative analysis indicates that a simple robust methodology can provide a good balance between those two issues for linear and nonlinear benchmarks.
Fil: Llanos, Claudia Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Sanchez, Mabel Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Maronna, Ricardo Antonio. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina - Materia
-
Data Reconciliation
Robust Statistics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/23707
Ver los metadatos del registro completo
id |
CONICETDig_65bb24b57458bf11d0ef33fd73ab28b9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/23707 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Robust Estimators for Data ReconciliationLlanos, Claudia ElizabethSanchez, Mabel CristinaMaronna, Ricardo AntonioData ReconciliationRobust Statisticshttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2In this work, a comparative performance analysis of robust data reconciliation strategies is presented. The study involves two procedures based on the biweight function and three estimation techniques that use the Welsh, quasi-weighted least squares, and correntropy M-estimators. The aforementioned functions are selected for comparative purposes because their use in the data reconciliation literature has appeared during the past decade. All procedures are properly tuned to have the same estimation and gross error detection/identification capabilities under the ideal distribution. Different measurement models are systematically taken into account, and results are analyzed considering both performance measures (average number of type I errors, global performance, mean square error) and computational load. The comparative analysis indicates that a simple robust methodology can provide a good balance between those two issues for linear and nonlinear benchmarks.Fil: Llanos, Claudia Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Sanchez, Mabel Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Maronna, Ricardo Antonio. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; ArgentinaAmerican Chemical Society2015-04-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/23707Llanos, Claudia Elizabeth; Sanchez, Mabel Cristina; Maronna, Ricardo Antonio; Robust Estimators for Data Reconciliation; American Chemical Society; Industrial & Engineering Chemical Research; 54; 18; 7-4-2015; 5096-51050888-5885CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/ie504735ainfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/ie504735ainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:07:04Zoai:ri.conicet.gov.ar:11336/23707instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:07:05.066CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Robust Estimators for Data Reconciliation |
title |
Robust Estimators for Data Reconciliation |
spellingShingle |
Robust Estimators for Data Reconciliation Llanos, Claudia Elizabeth Data Reconciliation Robust Statistics |
title_short |
Robust Estimators for Data Reconciliation |
title_full |
Robust Estimators for Data Reconciliation |
title_fullStr |
Robust Estimators for Data Reconciliation |
title_full_unstemmed |
Robust Estimators for Data Reconciliation |
title_sort |
Robust Estimators for Data Reconciliation |
dc.creator.none.fl_str_mv |
Llanos, Claudia Elizabeth Sanchez, Mabel Cristina Maronna, Ricardo Antonio |
author |
Llanos, Claudia Elizabeth |
author_facet |
Llanos, Claudia Elizabeth Sanchez, Mabel Cristina Maronna, Ricardo Antonio |
author_role |
author |
author2 |
Sanchez, Mabel Cristina Maronna, Ricardo Antonio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Data Reconciliation Robust Statistics |
topic |
Data Reconciliation Robust Statistics |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this work, a comparative performance analysis of robust data reconciliation strategies is presented. The study involves two procedures based on the biweight function and three estimation techniques that use the Welsh, quasi-weighted least squares, and correntropy M-estimators. The aforementioned functions are selected for comparative purposes because their use in the data reconciliation literature has appeared during the past decade. All procedures are properly tuned to have the same estimation and gross error detection/identification capabilities under the ideal distribution. Different measurement models are systematically taken into account, and results are analyzed considering both performance measures (average number of type I errors, global performance, mean square error) and computational load. The comparative analysis indicates that a simple robust methodology can provide a good balance between those two issues for linear and nonlinear benchmarks. Fil: Llanos, Claudia Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina Fil: Sanchez, Mabel Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina Fil: Maronna, Ricardo Antonio. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina |
description |
In this work, a comparative performance analysis of robust data reconciliation strategies is presented. The study involves two procedures based on the biweight function and three estimation techniques that use the Welsh, quasi-weighted least squares, and correntropy M-estimators. The aforementioned functions are selected for comparative purposes because their use in the data reconciliation literature has appeared during the past decade. All procedures are properly tuned to have the same estimation and gross error detection/identification capabilities under the ideal distribution. Different measurement models are systematically taken into account, and results are analyzed considering both performance measures (average number of type I errors, global performance, mean square error) and computational load. The comparative analysis indicates that a simple robust methodology can provide a good balance between those two issues for linear and nonlinear benchmarks. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-04-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/23707 Llanos, Claudia Elizabeth; Sanchez, Mabel Cristina; Maronna, Ricardo Antonio; Robust Estimators for Data Reconciliation; American Chemical Society; Industrial & Engineering Chemical Research; 54; 18; 7-4-2015; 5096-5105 0888-5885 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/23707 |
identifier_str_mv |
Llanos, Claudia Elizabeth; Sanchez, Mabel Cristina; Maronna, Ricardo Antonio; Robust Estimators for Data Reconciliation; American Chemical Society; Industrial & Engineering Chemical Research; 54; 18; 7-4-2015; 5096-5105 0888-5885 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1021/ie504735a info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/ie504735a |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980309141815296 |
score |
12.993085 |