On-line process monitoring using a robust statistics based methodology
- Autores
- Llanos, Claudia Elizabeth; Chávez Galletti, Roberto Javier; Sanchez, Mabel Cristina; Maronna, Ricardo Antonio
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Robust Data Reconciliation strategies provide unbiasedvariable estimates in the presence of a moderate quantity of measurement grosserrors. Systematic errors which persist in time, as biases or drifts, overcome thisquantity causing the deterioration of the estimates. This also occurs due tothe presence of process leaks. The fast detection of those faults avoids theuse of biased solutions of the data reconciliation procedure, and allows toperform quick corrective actions. In this work, a methodology for leakdetection is incorporated into a robust data reconciliation procedure thatdetects and classifies systematic observation errors. The strategy makes use ofthe Robust Measurement Test, to detect outliers and leaks, and the RobustLinear Regression of the data contained in a moving window to distinguish betweenbiases and drifts. The methodology is applied for two benchmarks extracted fromthe literature. Results highlight the performance of the proposed strategy.
Fil: Llanos, Claudia Elizabeth. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Chávez Galletti, Roberto Javier. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Sanchez, Mabel Cristina. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Maronna, Ricardo Antonio. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina - Materia
-
MEASUREMENT ERRORS
LEAK DETECTION
ROBUST DATA RECONCILIATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/108895
Ver los metadatos del registro completo
id |
CONICETDig_8b57f6ec6dae8b2e05a0d9045b3c96d0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/108895 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On-line process monitoring using a robust statistics based methodologyLlanos, Claudia ElizabethChávez Galletti, Roberto JavierSanchez, Mabel CristinaMaronna, Ricardo AntonioMEASUREMENT ERRORSLEAK DETECTIONROBUST DATA RECONCILIATIONhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Robust Data Reconciliation strategies provide unbiasedvariable estimates in the presence of a moderate quantity of measurement grosserrors. Systematic errors which persist in time, as biases or drifts, overcome thisquantity causing the deterioration of the estimates. This also occurs due tothe presence of process leaks. The fast detection of those faults avoids theuse of biased solutions of the data reconciliation procedure, and allows toperform quick corrective actions. In this work, a methodology for leakdetection is incorporated into a robust data reconciliation procedure thatdetects and classifies systematic observation errors. The strategy makes use ofthe Robust Measurement Test, to detect outliers and leaks, and the RobustLinear Regression of the data contained in a moving window to distinguish betweenbiases and drifts. The methodology is applied for two benchmarks extracted fromthe literature. Results highlight the performance of the proposed strategy.Fil: Llanos, Claudia Elizabeth. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Chávez Galletti, Roberto Javier. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Sanchez, Mabel Cristina. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Maronna, Ricardo Antonio. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaPlanta Piloto de Ingeniería Química2019-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/108895Llanos, Claudia Elizabeth; Chávez Galletti, Roberto Javier; Sanchez, Mabel Cristina; Maronna, Ricardo Antonio; On-line process monitoring using a robust statistics based methodology; Planta Piloto de Ingeniería Química; Latin American Applied Research; 49; 2; 8-2019; 111-1160327-07931851-8796CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://laar.plapiqui.edu.ar/OJS/index.php/laar/article/view/47info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:20:22Zoai:ri.conicet.gov.ar:11336/108895instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:20:22.656CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On-line process monitoring using a robust statistics based methodology |
title |
On-line process monitoring using a robust statistics based methodology |
spellingShingle |
On-line process monitoring using a robust statistics based methodology Llanos, Claudia Elizabeth MEASUREMENT ERRORS LEAK DETECTION ROBUST DATA RECONCILIATION |
title_short |
On-line process monitoring using a robust statistics based methodology |
title_full |
On-line process monitoring using a robust statistics based methodology |
title_fullStr |
On-line process monitoring using a robust statistics based methodology |
title_full_unstemmed |
On-line process monitoring using a robust statistics based methodology |
title_sort |
On-line process monitoring using a robust statistics based methodology |
dc.creator.none.fl_str_mv |
Llanos, Claudia Elizabeth Chávez Galletti, Roberto Javier Sanchez, Mabel Cristina Maronna, Ricardo Antonio |
author |
Llanos, Claudia Elizabeth |
author_facet |
Llanos, Claudia Elizabeth Chávez Galletti, Roberto Javier Sanchez, Mabel Cristina Maronna, Ricardo Antonio |
author_role |
author |
author2 |
Chávez Galletti, Roberto Javier Sanchez, Mabel Cristina Maronna, Ricardo Antonio |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
MEASUREMENT ERRORS LEAK DETECTION ROBUST DATA RECONCILIATION |
topic |
MEASUREMENT ERRORS LEAK DETECTION ROBUST DATA RECONCILIATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Robust Data Reconciliation strategies provide unbiasedvariable estimates in the presence of a moderate quantity of measurement grosserrors. Systematic errors which persist in time, as biases or drifts, overcome thisquantity causing the deterioration of the estimates. This also occurs due tothe presence of process leaks. The fast detection of those faults avoids theuse of biased solutions of the data reconciliation procedure, and allows toperform quick corrective actions. In this work, a methodology for leakdetection is incorporated into a robust data reconciliation procedure thatdetects and classifies systematic observation errors. The strategy makes use ofthe Robust Measurement Test, to detect outliers and leaks, and the RobustLinear Regression of the data contained in a moving window to distinguish betweenbiases and drifts. The methodology is applied for two benchmarks extracted fromthe literature. Results highlight the performance of the proposed strategy. Fil: Llanos, Claudia Elizabeth. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina Fil: Chávez Galletti, Roberto Javier. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina Fil: Sanchez, Mabel Cristina. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina Fil: Maronna, Ricardo Antonio. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina |
description |
Robust Data Reconciliation strategies provide unbiasedvariable estimates in the presence of a moderate quantity of measurement grosserrors. Systematic errors which persist in time, as biases or drifts, overcome thisquantity causing the deterioration of the estimates. This also occurs due tothe presence of process leaks. The fast detection of those faults avoids theuse of biased solutions of the data reconciliation procedure, and allows toperform quick corrective actions. In this work, a methodology for leakdetection is incorporated into a robust data reconciliation procedure thatdetects and classifies systematic observation errors. The strategy makes use ofthe Robust Measurement Test, to detect outliers and leaks, and the RobustLinear Regression of the data contained in a moving window to distinguish betweenbiases and drifts. The methodology is applied for two benchmarks extracted fromthe literature. Results highlight the performance of the proposed strategy. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/108895 Llanos, Claudia Elizabeth; Chávez Galletti, Roberto Javier; Sanchez, Mabel Cristina; Maronna, Ricardo Antonio; On-line process monitoring using a robust statistics based methodology; Planta Piloto de Ingeniería Química; Latin American Applied Research; 49; 2; 8-2019; 111-116 0327-0793 1851-8796 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/108895 |
identifier_str_mv |
Llanos, Claudia Elizabeth; Chávez Galletti, Roberto Javier; Sanchez, Mabel Cristina; Maronna, Ricardo Antonio; On-line process monitoring using a robust statistics based methodology; Planta Piloto de Ingeniería Química; Latin American Applied Research; 49; 2; 8-2019; 111-116 0327-0793 1851-8796 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://laar.plapiqui.edu.ar/OJS/index.php/laar/article/view/47 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Planta Piloto de Ingeniería Química |
publisher.none.fl_str_mv |
Planta Piloto de Ingeniería Química |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082577900765184 |
score |
13.22299 |