Google matrix
- Autores
- Ermann, Leonardo; Frahm, Klaus; Shepelyansky, Dima
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The Google matrix G of a directed network is a stochastic square matrix with nonnegative matrix elements and the sum of elements in each column being equal to unity. This matrix describes a Markov chain (Markov, 1906-a) of transitions of a random surfer performing jumps on a network of nodes connected by directed links. The network is characterized by an adjacency matrix Aij with elements Aij=1 if node j points to node i and zero otherwise. The matrix of Markov transitions Sij is constructed from the adjacency matrix Aij by normalization of the sum of column elements to unity and replacing columns with only zero elements (dangling nodes) with equal elements 1/N where N is the matrix size (number of nodes). Then the elements of the Google matrix are defined as Gij=αSij+(1−α)/N.
Fil: Ermann, Leonardo. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes. Gerencia de Investigación y Aplicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Frahm, Klaus. Universitá Paul Sabatier; Francia
Fil: Shepelyansky, Dima. Universitá Paul Sabatier; Francia - Materia
-
COMPLEX NETWORKS
SPECTRUM
QUANTUM CHAOS
COMPLEX SYSTEMS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18029
Ver los metadatos del registro completo
id |
CONICETDig_a1a09a92739f56807afbb80da6d7f725 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18029 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Google matrixErmann, LeonardoFrahm, KlausShepelyansky, DimaCOMPLEX NETWORKSSPECTRUMQUANTUM CHAOSCOMPLEX SYSTEMShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The Google matrix G of a directed network is a stochastic square matrix with nonnegative matrix elements and the sum of elements in each column being equal to unity. This matrix describes a Markov chain (Markov, 1906-a) of transitions of a random surfer performing jumps on a network of nodes connected by directed links. The network is characterized by an adjacency matrix Aij with elements Aij=1 if node j points to node i and zero otherwise. The matrix of Markov transitions Sij is constructed from the adjacency matrix Aij by normalization of the sum of column elements to unity and replacing columns with only zero elements (dangling nodes) with equal elements 1/N where N is the matrix size (number of nodes). Then the elements of the Google matrix are defined as Gij=αSij+(1−α)/N.Fil: Ermann, Leonardo. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes. Gerencia de Investigación y Aplicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Frahm, Klaus. Universitá Paul Sabatier; FranciaFil: Shepelyansky, Dima. Universitá Paul Sabatier; FranciaScholarpedia2016-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18029Ermann, Leonardo; Frahm, Klaus; Shepelyansky, Dima; Google matrix; Scholarpedia; Scholarpedia; 11; 11; 11-20161941-6016enginfo:eu-repo/semantics/altIdentifier/url/http://www.scholarpedia.org/article/Google_matrixinfo:eu-repo/semantics/altIdentifier/doi/10.4249/scholarpedia.30944info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:57:07Zoai:ri.conicet.gov.ar:11336/18029instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:57:07.54CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Google matrix |
title |
Google matrix |
spellingShingle |
Google matrix Ermann, Leonardo COMPLEX NETWORKS SPECTRUM QUANTUM CHAOS COMPLEX SYSTEMS |
title_short |
Google matrix |
title_full |
Google matrix |
title_fullStr |
Google matrix |
title_full_unstemmed |
Google matrix |
title_sort |
Google matrix |
dc.creator.none.fl_str_mv |
Ermann, Leonardo Frahm, Klaus Shepelyansky, Dima |
author |
Ermann, Leonardo |
author_facet |
Ermann, Leonardo Frahm, Klaus Shepelyansky, Dima |
author_role |
author |
author2 |
Frahm, Klaus Shepelyansky, Dima |
author2_role |
author author |
dc.subject.none.fl_str_mv |
COMPLEX NETWORKS SPECTRUM QUANTUM CHAOS COMPLEX SYSTEMS |
topic |
COMPLEX NETWORKS SPECTRUM QUANTUM CHAOS COMPLEX SYSTEMS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The Google matrix G of a directed network is a stochastic square matrix with nonnegative matrix elements and the sum of elements in each column being equal to unity. This matrix describes a Markov chain (Markov, 1906-a) of transitions of a random surfer performing jumps on a network of nodes connected by directed links. The network is characterized by an adjacency matrix Aij with elements Aij=1 if node j points to node i and zero otherwise. The matrix of Markov transitions Sij is constructed from the adjacency matrix Aij by normalization of the sum of column elements to unity and replacing columns with only zero elements (dangling nodes) with equal elements 1/N where N is the matrix size (number of nodes). Then the elements of the Google matrix are defined as Gij=αSij+(1−α)/N. Fil: Ermann, Leonardo. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes. Gerencia de Investigación y Aplicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Frahm, Klaus. Universitá Paul Sabatier; Francia Fil: Shepelyansky, Dima. Universitá Paul Sabatier; Francia |
description |
The Google matrix G of a directed network is a stochastic square matrix with nonnegative matrix elements and the sum of elements in each column being equal to unity. This matrix describes a Markov chain (Markov, 1906-a) of transitions of a random surfer performing jumps on a network of nodes connected by directed links. The network is characterized by an adjacency matrix Aij with elements Aij=1 if node j points to node i and zero otherwise. The matrix of Markov transitions Sij is constructed from the adjacency matrix Aij by normalization of the sum of column elements to unity and replacing columns with only zero elements (dangling nodes) with equal elements 1/N where N is the matrix size (number of nodes). Then the elements of the Google matrix are defined as Gij=αSij+(1−α)/N. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18029 Ermann, Leonardo; Frahm, Klaus; Shepelyansky, Dima; Google matrix; Scholarpedia; Scholarpedia; 11; 11; 11-2016 1941-6016 |
url |
http://hdl.handle.net/11336/18029 |
identifier_str_mv |
Ermann, Leonardo; Frahm, Klaus; Shepelyansky, Dima; Google matrix; Scholarpedia; Scholarpedia; 11; 11; 11-2016 1941-6016 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.scholarpedia.org/article/Google_matrix info:eu-repo/semantics/altIdentifier/doi/10.4249/scholarpedia.30944 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Scholarpedia |
publisher.none.fl_str_mv |
Scholarpedia |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269440913178624 |
score |
13.13397 |