Incommensurate standard map

Autores
Ermann, Leonardo; Shepelyansky, Dima L.
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We introduce and study the extension of the Chirikov standard map when the kick potential has two and three incommensurate spatial harmonics. This system is called the incommensurate standard map. At small kick amplitudes, the dynamics is bounded by the isolating Kolmogorov-Arnold-Moser surfaces, whereas above a certain kick strength, it becomes unbounded and diffusive. The quantum evolution at small quantum kick amplitudes is somewhat similar to the case of the Aubru-André model studied in mathematics and experiments with cold atoms in a static incommensurate potential. We show that for the quantum map there is also a metalinsulator transition in space whereas in momentum we have localization similar to the case of two-dimensional Anderson localization. In the case of three incommensurate frequencies of the space potential, the quantum evolution is characterized by the Anderson transition similar to the three-dimensional case of the disordered potential. We discuss possible physical systems with such a map description including dynamics of comets and dark matter in planetary systems.
Fil: Ermann, Leonardo. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Shepelyansky, Dima L.. Université de Toulouse; Francia
Materia
quantum chaos
chaos
dynamical systems
standard map
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/117442

id CONICETDig_0261b9793309b79903f4ef7de699e9c7
oai_identifier_str oai:ri.conicet.gov.ar:11336/117442
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Incommensurate standard mapErmann, LeonardoShepelyansky, Dima L.quantum chaoschaosdynamical systemsstandard maphttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We introduce and study the extension of the Chirikov standard map when the kick potential has two and three incommensurate spatial harmonics. This system is called the incommensurate standard map. At small kick amplitudes, the dynamics is bounded by the isolating Kolmogorov-Arnold-Moser surfaces, whereas above a certain kick strength, it becomes unbounded and diffusive. The quantum evolution at small quantum kick amplitudes is somewhat similar to the case of the Aubru-André model studied in mathematics and experiments with cold atoms in a static incommensurate potential. We show that for the quantum map there is also a metalinsulator transition in space whereas in momentum we have localization similar to the case of two-dimensional Anderson localization. In the case of three incommensurate frequencies of the space potential, the quantum evolution is characterized by the Anderson transition similar to the three-dimensional case of the disordered potential. We discuss possible physical systems with such a map description including dynamics of comets and dark matter in planetary systems.Fil: Ermann, Leonardo. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Shepelyansky, Dima L.. Université de Toulouse; FranciaAmerican Physical Society2019-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/117442Ermann, Leonardo; Shepelyansky, Dima L.; Incommensurate standard map; American Physical Society; Physical Review E: Statistical Physics, Plasmas, Fluids and Related Interdisciplinary Topics; 99; 1; 1-2019; 12215-122242470-00532470-0045CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.99.012215info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.99.012215info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:40Zoai:ri.conicet.gov.ar:11336/117442instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:40.452CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Incommensurate standard map
title Incommensurate standard map
spellingShingle Incommensurate standard map
Ermann, Leonardo
quantum chaos
chaos
dynamical systems
standard map
title_short Incommensurate standard map
title_full Incommensurate standard map
title_fullStr Incommensurate standard map
title_full_unstemmed Incommensurate standard map
title_sort Incommensurate standard map
dc.creator.none.fl_str_mv Ermann, Leonardo
Shepelyansky, Dima L.
author Ermann, Leonardo
author_facet Ermann, Leonardo
Shepelyansky, Dima L.
author_role author
author2 Shepelyansky, Dima L.
author2_role author
dc.subject.none.fl_str_mv quantum chaos
chaos
dynamical systems
standard map
topic quantum chaos
chaos
dynamical systems
standard map
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We introduce and study the extension of the Chirikov standard map when the kick potential has two and three incommensurate spatial harmonics. This system is called the incommensurate standard map. At small kick amplitudes, the dynamics is bounded by the isolating Kolmogorov-Arnold-Moser surfaces, whereas above a certain kick strength, it becomes unbounded and diffusive. The quantum evolution at small quantum kick amplitudes is somewhat similar to the case of the Aubru-André model studied in mathematics and experiments with cold atoms in a static incommensurate potential. We show that for the quantum map there is also a metalinsulator transition in space whereas in momentum we have localization similar to the case of two-dimensional Anderson localization. In the case of three incommensurate frequencies of the space potential, the quantum evolution is characterized by the Anderson transition similar to the three-dimensional case of the disordered potential. We discuss possible physical systems with such a map description including dynamics of comets and dark matter in planetary systems.
Fil: Ermann, Leonardo. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Shepelyansky, Dima L.. Université de Toulouse; Francia
description We introduce and study the extension of the Chirikov standard map when the kick potential has two and three incommensurate spatial harmonics. This system is called the incommensurate standard map. At small kick amplitudes, the dynamics is bounded by the isolating Kolmogorov-Arnold-Moser surfaces, whereas above a certain kick strength, it becomes unbounded and diffusive. The quantum evolution at small quantum kick amplitudes is somewhat similar to the case of the Aubru-André model studied in mathematics and experiments with cold atoms in a static incommensurate potential. We show that for the quantum map there is also a metalinsulator transition in space whereas in momentum we have localization similar to the case of two-dimensional Anderson localization. In the case of three incommensurate frequencies of the space potential, the quantum evolution is characterized by the Anderson transition similar to the three-dimensional case of the disordered potential. We discuss possible physical systems with such a map description including dynamics of comets and dark matter in planetary systems.
publishDate 2019
dc.date.none.fl_str_mv 2019-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/117442
Ermann, Leonardo; Shepelyansky, Dima L.; Incommensurate standard map; American Physical Society; Physical Review E: Statistical Physics, Plasmas, Fluids and Related Interdisciplinary Topics; 99; 1; 1-2019; 12215-12224
2470-0053
2470-0045
CONICET Digital
CONICET
url http://hdl.handle.net/11336/117442
identifier_str_mv Ermann, Leonardo; Shepelyansky, Dima L.; Incommensurate standard map; American Physical Society; Physical Review E: Statistical Physics, Plasmas, Fluids and Related Interdisciplinary Topics; 99; 1; 1-2019; 12215-12224
2470-0053
2470-0045
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.99.012215
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.99.012215
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269416900788224
score 13.13397