Incommensurate standard map
- Autores
- Ermann, Leonardo; Shepelyansky, Dima L.
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We introduce and study the extension of the Chirikov standard map when the kick potential has two and three incommensurate spatial harmonics. This system is called the incommensurate standard map. At small kick amplitudes, the dynamics is bounded by the isolating Kolmogorov-Arnold-Moser surfaces, whereas above a certain kick strength, it becomes unbounded and diffusive. The quantum evolution at small quantum kick amplitudes is somewhat similar to the case of the Aubru-André model studied in mathematics and experiments with cold atoms in a static incommensurate potential. We show that for the quantum map there is also a metalinsulator transition in space whereas in momentum we have localization similar to the case of two-dimensional Anderson localization. In the case of three incommensurate frequencies of the space potential, the quantum evolution is characterized by the Anderson transition similar to the three-dimensional case of the disordered potential. We discuss possible physical systems with such a map description including dynamics of comets and dark matter in planetary systems.
Fil: Ermann, Leonardo. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Shepelyansky, Dima L.. Université de Toulouse; Francia - Materia
-
quantum chaos
chaos
dynamical systems
standard map - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/117442
Ver los metadatos del registro completo
id |
CONICETDig_0261b9793309b79903f4ef7de699e9c7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/117442 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Incommensurate standard mapErmann, LeonardoShepelyansky, Dima L.quantum chaoschaosdynamical systemsstandard maphttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We introduce and study the extension of the Chirikov standard map when the kick potential has two and three incommensurate spatial harmonics. This system is called the incommensurate standard map. At small kick amplitudes, the dynamics is bounded by the isolating Kolmogorov-Arnold-Moser surfaces, whereas above a certain kick strength, it becomes unbounded and diffusive. The quantum evolution at small quantum kick amplitudes is somewhat similar to the case of the Aubru-André model studied in mathematics and experiments with cold atoms in a static incommensurate potential. We show that for the quantum map there is also a metalinsulator transition in space whereas in momentum we have localization similar to the case of two-dimensional Anderson localization. In the case of three incommensurate frequencies of the space potential, the quantum evolution is characterized by the Anderson transition similar to the three-dimensional case of the disordered potential. We discuss possible physical systems with such a map description including dynamics of comets and dark matter in planetary systems.Fil: Ermann, Leonardo. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Shepelyansky, Dima L.. Université de Toulouse; FranciaAmerican Physical Society2019-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/117442Ermann, Leonardo; Shepelyansky, Dima L.; Incommensurate standard map; American Physical Society; Physical Review E: Statistical Physics, Plasmas, Fluids and Related Interdisciplinary Topics; 99; 1; 1-2019; 12215-122242470-00532470-0045CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.99.012215info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.99.012215info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:40Zoai:ri.conicet.gov.ar:11336/117442instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:40.452CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Incommensurate standard map |
title |
Incommensurate standard map |
spellingShingle |
Incommensurate standard map Ermann, Leonardo quantum chaos chaos dynamical systems standard map |
title_short |
Incommensurate standard map |
title_full |
Incommensurate standard map |
title_fullStr |
Incommensurate standard map |
title_full_unstemmed |
Incommensurate standard map |
title_sort |
Incommensurate standard map |
dc.creator.none.fl_str_mv |
Ermann, Leonardo Shepelyansky, Dima L. |
author |
Ermann, Leonardo |
author_facet |
Ermann, Leonardo Shepelyansky, Dima L. |
author_role |
author |
author2 |
Shepelyansky, Dima L. |
author2_role |
author |
dc.subject.none.fl_str_mv |
quantum chaos chaos dynamical systems standard map |
topic |
quantum chaos chaos dynamical systems standard map |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We introduce and study the extension of the Chirikov standard map when the kick potential has two and three incommensurate spatial harmonics. This system is called the incommensurate standard map. At small kick amplitudes, the dynamics is bounded by the isolating Kolmogorov-Arnold-Moser surfaces, whereas above a certain kick strength, it becomes unbounded and diffusive. The quantum evolution at small quantum kick amplitudes is somewhat similar to the case of the Aubru-André model studied in mathematics and experiments with cold atoms in a static incommensurate potential. We show that for the quantum map there is also a metalinsulator transition in space whereas in momentum we have localization similar to the case of two-dimensional Anderson localization. In the case of three incommensurate frequencies of the space potential, the quantum evolution is characterized by the Anderson transition similar to the three-dimensional case of the disordered potential. We discuss possible physical systems with such a map description including dynamics of comets and dark matter in planetary systems. Fil: Ermann, Leonardo. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Shepelyansky, Dima L.. Université de Toulouse; Francia |
description |
We introduce and study the extension of the Chirikov standard map when the kick potential has two and three incommensurate spatial harmonics. This system is called the incommensurate standard map. At small kick amplitudes, the dynamics is bounded by the isolating Kolmogorov-Arnold-Moser surfaces, whereas above a certain kick strength, it becomes unbounded and diffusive. The quantum evolution at small quantum kick amplitudes is somewhat similar to the case of the Aubru-André model studied in mathematics and experiments with cold atoms in a static incommensurate potential. We show that for the quantum map there is also a metalinsulator transition in space whereas in momentum we have localization similar to the case of two-dimensional Anderson localization. In the case of three incommensurate frequencies of the space potential, the quantum evolution is characterized by the Anderson transition similar to the three-dimensional case of the disordered potential. We discuss possible physical systems with such a map description including dynamics of comets and dark matter in planetary systems. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/117442 Ermann, Leonardo; Shepelyansky, Dima L.; Incommensurate standard map; American Physical Society; Physical Review E: Statistical Physics, Plasmas, Fluids and Related Interdisciplinary Topics; 99; 1; 1-2019; 12215-12224 2470-0053 2470-0045 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/117442 |
identifier_str_mv |
Ermann, Leonardo; Shepelyansky, Dima L.; Incommensurate standard map; American Physical Society; Physical Review E: Statistical Physics, Plasmas, Fluids and Related Interdisciplinary Topics; 99; 1; 1-2019; 12215-12224 2470-0053 2470-0045 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.99.012215 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.99.012215 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269416900788224 |
score |
13.13397 |