Google matrix analysis of the multiproduct world trade network
- Autores
- Ermann, Leonardo; Shepelyansky, Dima L.
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Using the United Nations COMTRADE database [United Nations Commodity Trade Statistics Database, available at: http://comtrade.un.org/db/. Accessed November (2014)] we construct the Google matrix G of multiproduct world trade between the UN countries and analyze the properties of trade flows on this network for years 1962−2010. This construction, based on Markov chains, treats all countries on equal democratic grounds independently of their richness and at the same time it considers the contributions of trade products proportionally to their trade volume. We consider the trade with 61 products for up to 227 countries. The obtained results show that the trade contribution of products is asymmetric: some of them are export oriented while others are import oriented even if the ranking by their trade volume is symmetric in respect to export and import after averaging over all world countries. The construction of the Google matrix allows to investigate the sensitivity of trade balance in respect to price variations of products, e.g. petroleum and gas, taking into account the world connectivity of trade links. The trade balance based on PageRank and CheiRank probabilities highlights the leading role of China and other BRICS countries in the world trade in recent years. We also show that the eigenstates of G with large eigenvalues select specific trade communities.
Fil: Ermann, Leonardo. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones no Nucleares. Gerencia Física (CAC). Grupo de Física Teórica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Shepelyansky, Dima L.. Centre National de la Recherche Scientifique; Francia. Université Paul Sabatier; Francia - Materia
-
Complex Networks
World Trade
Google Matrix
Statistical And Nonlinear Physics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/38358
Ver los metadatos del registro completo
id |
CONICETDig_e27e620d65fb5dcceecb9b534b1661c6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/38358 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Google matrix analysis of the multiproduct world trade networkErmann, LeonardoShepelyansky, Dima L.Complex NetworksWorld TradeGoogle MatrixStatistical And Nonlinear Physicshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Using the United Nations COMTRADE database [United Nations Commodity Trade Statistics Database, available at: http://comtrade.un.org/db/. Accessed November (2014)] we construct the Google matrix G of multiproduct world trade between the UN countries and analyze the properties of trade flows on this network for years 1962−2010. This construction, based on Markov chains, treats all countries on equal democratic grounds independently of their richness and at the same time it considers the contributions of trade products proportionally to their trade volume. We consider the trade with 61 products for up to 227 countries. The obtained results show that the trade contribution of products is asymmetric: some of them are export oriented while others are import oriented even if the ranking by their trade volume is symmetric in respect to export and import after averaging over all world countries. The construction of the Google matrix allows to investigate the sensitivity of trade balance in respect to price variations of products, e.g. petroleum and gas, taking into account the world connectivity of trade links. The trade balance based on PageRank and CheiRank probabilities highlights the leading role of China and other BRICS countries in the world trade in recent years. We also show that the eigenstates of G with large eigenvalues select specific trade communities.Fil: Ermann, Leonardo. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones no Nucleares. Gerencia Física (CAC). Grupo de Física Teórica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Shepelyansky, Dima L.. Centre National de la Recherche Scientifique; Francia. Université Paul Sabatier; FranciaSpringer2015-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/38358Ermann, Leonardo; Shepelyansky, Dima L.; Google matrix analysis of the multiproduct world trade network; Springer; European Physical Journal B - Condensed Matter; 88; 4; 4-2015; 84-1031434-60281434-6036CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1140/epjb/e2015-60047-0info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1140%2Fepjb%2Fe2015-60047-0info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:08:10Zoai:ri.conicet.gov.ar:11336/38358instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:08:10.601CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Google matrix analysis of the multiproduct world trade network |
title |
Google matrix analysis of the multiproduct world trade network |
spellingShingle |
Google matrix analysis of the multiproduct world trade network Ermann, Leonardo Complex Networks World Trade Google Matrix Statistical And Nonlinear Physics |
title_short |
Google matrix analysis of the multiproduct world trade network |
title_full |
Google matrix analysis of the multiproduct world trade network |
title_fullStr |
Google matrix analysis of the multiproduct world trade network |
title_full_unstemmed |
Google matrix analysis of the multiproduct world trade network |
title_sort |
Google matrix analysis of the multiproduct world trade network |
dc.creator.none.fl_str_mv |
Ermann, Leonardo Shepelyansky, Dima L. |
author |
Ermann, Leonardo |
author_facet |
Ermann, Leonardo Shepelyansky, Dima L. |
author_role |
author |
author2 |
Shepelyansky, Dima L. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Complex Networks World Trade Google Matrix Statistical And Nonlinear Physics |
topic |
Complex Networks World Trade Google Matrix Statistical And Nonlinear Physics |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Using the United Nations COMTRADE database [United Nations Commodity Trade Statistics Database, available at: http://comtrade.un.org/db/. Accessed November (2014)] we construct the Google matrix G of multiproduct world trade between the UN countries and analyze the properties of trade flows on this network for years 1962−2010. This construction, based on Markov chains, treats all countries on equal democratic grounds independently of their richness and at the same time it considers the contributions of trade products proportionally to their trade volume. We consider the trade with 61 products for up to 227 countries. The obtained results show that the trade contribution of products is asymmetric: some of them are export oriented while others are import oriented even if the ranking by their trade volume is symmetric in respect to export and import after averaging over all world countries. The construction of the Google matrix allows to investigate the sensitivity of trade balance in respect to price variations of products, e.g. petroleum and gas, taking into account the world connectivity of trade links. The trade balance based on PageRank and CheiRank probabilities highlights the leading role of China and other BRICS countries in the world trade in recent years. We also show that the eigenstates of G with large eigenvalues select specific trade communities. Fil: Ermann, Leonardo. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones no Nucleares. Gerencia Física (CAC). Grupo de Física Teórica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Shepelyansky, Dima L.. Centre National de la Recherche Scientifique; Francia. Université Paul Sabatier; Francia |
description |
Using the United Nations COMTRADE database [United Nations Commodity Trade Statistics Database, available at: http://comtrade.un.org/db/. Accessed November (2014)] we construct the Google matrix G of multiproduct world trade between the UN countries and analyze the properties of trade flows on this network for years 1962−2010. This construction, based on Markov chains, treats all countries on equal democratic grounds independently of their richness and at the same time it considers the contributions of trade products proportionally to their trade volume. We consider the trade with 61 products for up to 227 countries. The obtained results show that the trade contribution of products is asymmetric: some of them are export oriented while others are import oriented even if the ranking by their trade volume is symmetric in respect to export and import after averaging over all world countries. The construction of the Google matrix allows to investigate the sensitivity of trade balance in respect to price variations of products, e.g. petroleum and gas, taking into account the world connectivity of trade links. The trade balance based on PageRank and CheiRank probabilities highlights the leading role of China and other BRICS countries in the world trade in recent years. We also show that the eigenstates of G with large eigenvalues select specific trade communities. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/38358 Ermann, Leonardo; Shepelyansky, Dima L.; Google matrix analysis of the multiproduct world trade network; Springer; European Physical Journal B - Condensed Matter; 88; 4; 4-2015; 84-103 1434-6028 1434-6036 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/38358 |
identifier_str_mv |
Ermann, Leonardo; Shepelyansky, Dima L.; Google matrix analysis of the multiproduct world trade network; Springer; European Physical Journal B - Condensed Matter; 88; 4; 4-2015; 84-103 1434-6028 1434-6036 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1140/epjb/e2015-60047-0 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1140%2Fepjb%2Fe2015-60047-0 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270034114641920 |
score |
13.13397 |