Google matrix analysis of directed networks
- Autores
- Ermann, Leonardo; Frahm, Klaus M.; Shepelyansky, Dima L.
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the past decade modern societies have developed enormous communication and social networks. Their classification and information retrieval processing has become a formidable task for the society. Because of the rapid growth of the World Wide Web, and social and communication networks, new mathematical methods have been invented to characterize the properties of these networks in a more detailed and precise way. Various search engines extensively use such methods. It is highly important to develop new tools to classify and rank a massive amount of network information in a way that is adapted to internal network structures and characteristics. This review describes the Google matrix analysis of directed complex networks demonstrating its efficiency using various examples including the World Wide Web, Wikipedia, software architectures, world trade, social and citation networks, brain neural networks, DNA sequences, and Ulam networks. The analytical and numerical matrix methods used in this analysis originate from the fields of Markov chains, quantum chaos, and random matrix theory.
Fil: Ermann, Leonardo. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Frahm, Klaus M.. Centre National de la Recherche Scientifique; Francia
Fil: Shepelyansky, Dima L.. Centre National de la Recherche Scientifique; Francia - Materia
-
Complex Networks
Complex Systems
Spectral Properties - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/42056
Ver los metadatos del registro completo
id |
CONICETDig_3fca68384efae5428a39236f5eb2e5cc |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/42056 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Google matrix analysis of directed networksErmann, LeonardoFrahm, Klaus M.Shepelyansky, Dima L.Complex NetworksComplex SystemsSpectral Propertieshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In the past decade modern societies have developed enormous communication and social networks. Their classification and information retrieval processing has become a formidable task for the society. Because of the rapid growth of the World Wide Web, and social and communication networks, new mathematical methods have been invented to characterize the properties of these networks in a more detailed and precise way. Various search engines extensively use such methods. It is highly important to develop new tools to classify and rank a massive amount of network information in a way that is adapted to internal network structures and characteristics. This review describes the Google matrix analysis of directed complex networks demonstrating its efficiency using various examples including the World Wide Web, Wikipedia, software architectures, world trade, social and citation networks, brain neural networks, DNA sequences, and Ulam networks. The analytical and numerical matrix methods used in this analysis originate from the fields of Markov chains, quantum chaos, and random matrix theory.Fil: Ermann, Leonardo. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Frahm, Klaus M.. Centre National de la Recherche Scientifique; FranciaFil: Shepelyansky, Dima L.. Centre National de la Recherche Scientifique; FranciaAmerican Physical Society2015-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/42056Ermann, Leonardo; Frahm, Klaus M.; Shepelyansky, Dima L.; Google matrix analysis of directed networks; American Physical Society; Reviews Of Modern Physics; 87; 4; 10-2015; 1261-13100034-6861CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/RevModPhys.87.1261info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.87.1261info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:46:20Zoai:ri.conicet.gov.ar:11336/42056instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:46:21.037CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Google matrix analysis of directed networks |
title |
Google matrix analysis of directed networks |
spellingShingle |
Google matrix analysis of directed networks Ermann, Leonardo Complex Networks Complex Systems Spectral Properties |
title_short |
Google matrix analysis of directed networks |
title_full |
Google matrix analysis of directed networks |
title_fullStr |
Google matrix analysis of directed networks |
title_full_unstemmed |
Google matrix analysis of directed networks |
title_sort |
Google matrix analysis of directed networks |
dc.creator.none.fl_str_mv |
Ermann, Leonardo Frahm, Klaus M. Shepelyansky, Dima L. |
author |
Ermann, Leonardo |
author_facet |
Ermann, Leonardo Frahm, Klaus M. Shepelyansky, Dima L. |
author_role |
author |
author2 |
Frahm, Klaus M. Shepelyansky, Dima L. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Complex Networks Complex Systems Spectral Properties |
topic |
Complex Networks Complex Systems Spectral Properties |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In the past decade modern societies have developed enormous communication and social networks. Their classification and information retrieval processing has become a formidable task for the society. Because of the rapid growth of the World Wide Web, and social and communication networks, new mathematical methods have been invented to characterize the properties of these networks in a more detailed and precise way. Various search engines extensively use such methods. It is highly important to develop new tools to classify and rank a massive amount of network information in a way that is adapted to internal network structures and characteristics. This review describes the Google matrix analysis of directed complex networks demonstrating its efficiency using various examples including the World Wide Web, Wikipedia, software architectures, world trade, social and citation networks, brain neural networks, DNA sequences, and Ulam networks. The analytical and numerical matrix methods used in this analysis originate from the fields of Markov chains, quantum chaos, and random matrix theory. Fil: Ermann, Leonardo. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Frahm, Klaus M.. Centre National de la Recherche Scientifique; Francia Fil: Shepelyansky, Dima L.. Centre National de la Recherche Scientifique; Francia |
description |
In the past decade modern societies have developed enormous communication and social networks. Their classification and information retrieval processing has become a formidable task for the society. Because of the rapid growth of the World Wide Web, and social and communication networks, new mathematical methods have been invented to characterize the properties of these networks in a more detailed and precise way. Various search engines extensively use such methods. It is highly important to develop new tools to classify and rank a massive amount of network information in a way that is adapted to internal network structures and characteristics. This review describes the Google matrix analysis of directed complex networks demonstrating its efficiency using various examples including the World Wide Web, Wikipedia, software architectures, world trade, social and citation networks, brain neural networks, DNA sequences, and Ulam networks. The analytical and numerical matrix methods used in this analysis originate from the fields of Markov chains, quantum chaos, and random matrix theory. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/42056 Ermann, Leonardo; Frahm, Klaus M.; Shepelyansky, Dima L.; Google matrix analysis of directed networks; American Physical Society; Reviews Of Modern Physics; 87; 4; 10-2015; 1261-1310 0034-6861 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/42056 |
identifier_str_mv |
Ermann, Leonardo; Frahm, Klaus M.; Shepelyansky, Dima L.; Google matrix analysis of directed networks; American Physical Society; Reviews Of Modern Physics; 87; 4; 10-2015; 1261-1310 0034-6861 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/RevModPhys.87.1261 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.87.1261 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268788627603456 |
score |
13.13397 |