Spectral properties of Google matrix of Wikipedia and other networks
- Autores
- Ermann, Leonardo; Frahm, Klaus M.; Shepelyansky, Dima L.
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the properties of eigenvalues and eigenvectors of the Google matrix of the Wikipedia articles hyperlink network and other real networks. With the help of the Arnoldi method, we analyze the distribution of eigenvalues in the complex plane and show that eigenstates with significant eigenvalue modulus are located on well defined network communities. We also show that the correlator between PageRank and CheiRank vectors distinguishes different organizations of information flow on BBC and Le Monde web sites. © 2013 EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg.
Fil: Ermann, Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina
Fil: Frahm, Klaus M.. Universite de Toulouse; Francia
Fil: Shepelyansky, Dima L.. Universite de Toulouse; Francia - Materia
-
Complex Networks
World Wide Web
Google Matrix
Wikipedia - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/77858
Ver los metadatos del registro completo
id |
CONICETDig_1cb3e0d0c70df8e20e24a6df8fa397d7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/77858 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Spectral properties of Google matrix of Wikipedia and other networksErmann, LeonardoFrahm, Klaus M.Shepelyansky, Dima L.Complex NetworksWorld Wide WebGoogle MatrixWikipediahttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study the properties of eigenvalues and eigenvectors of the Google matrix of the Wikipedia articles hyperlink network and other real networks. With the help of the Arnoldi method, we analyze the distribution of eigenvalues in the complex plane and show that eigenstates with significant eigenvalue modulus are located on well defined network communities. We also show that the correlator between PageRank and CheiRank vectors distinguishes different organizations of information flow on BBC and Le Monde web sites. © 2013 EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg.Fil: Ermann, Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; ArgentinaFil: Frahm, Klaus M.. Universite de Toulouse; FranciaFil: Shepelyansky, Dima L.. Universite de Toulouse; FranciaSpringer2013-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/77858Ermann, Leonardo; Frahm, Klaus M.; Shepelyansky, Dima L.; Spectral properties of Google matrix of Wikipedia and other networks; Springer; European Physical Journal B - Condensed Matter; 86; 5; 5-2013; 193-2031434-6028CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1212.1068info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1140%2Fepjb%2Fe2013-31090-8info:eu-repo/semantics/altIdentifier/doi/10.1140/epjb/e2013-31090-8info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:10:03Zoai:ri.conicet.gov.ar:11336/77858instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:10:04.236CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Spectral properties of Google matrix of Wikipedia and other networks |
title |
Spectral properties of Google matrix of Wikipedia and other networks |
spellingShingle |
Spectral properties of Google matrix of Wikipedia and other networks Ermann, Leonardo Complex Networks World Wide Web Google Matrix Wikipedia |
title_short |
Spectral properties of Google matrix of Wikipedia and other networks |
title_full |
Spectral properties of Google matrix of Wikipedia and other networks |
title_fullStr |
Spectral properties of Google matrix of Wikipedia and other networks |
title_full_unstemmed |
Spectral properties of Google matrix of Wikipedia and other networks |
title_sort |
Spectral properties of Google matrix of Wikipedia and other networks |
dc.creator.none.fl_str_mv |
Ermann, Leonardo Frahm, Klaus M. Shepelyansky, Dima L. |
author |
Ermann, Leonardo |
author_facet |
Ermann, Leonardo Frahm, Klaus M. Shepelyansky, Dima L. |
author_role |
author |
author2 |
Frahm, Klaus M. Shepelyansky, Dima L. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Complex Networks World Wide Web Google Matrix Wikipedia |
topic |
Complex Networks World Wide Web Google Matrix Wikipedia |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the properties of eigenvalues and eigenvectors of the Google matrix of the Wikipedia articles hyperlink network and other real networks. With the help of the Arnoldi method, we analyze the distribution of eigenvalues in the complex plane and show that eigenstates with significant eigenvalue modulus are located on well defined network communities. We also show that the correlator between PageRank and CheiRank vectors distinguishes different organizations of information flow on BBC and Le Monde web sites. © 2013 EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg. Fil: Ermann, Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina Fil: Frahm, Klaus M.. Universite de Toulouse; Francia Fil: Shepelyansky, Dima L.. Universite de Toulouse; Francia |
description |
We study the properties of eigenvalues and eigenvectors of the Google matrix of the Wikipedia articles hyperlink network and other real networks. With the help of the Arnoldi method, we analyze the distribution of eigenvalues in the complex plane and show that eigenstates with significant eigenvalue modulus are located on well defined network communities. We also show that the correlator between PageRank and CheiRank vectors distinguishes different organizations of information flow on BBC and Le Monde web sites. © 2013 EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/77858 Ermann, Leonardo; Frahm, Klaus M.; Shepelyansky, Dima L.; Spectral properties of Google matrix of Wikipedia and other networks; Springer; European Physical Journal B - Condensed Matter; 86; 5; 5-2013; 193-203 1434-6028 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/77858 |
identifier_str_mv |
Ermann, Leonardo; Frahm, Klaus M.; Shepelyansky, Dima L.; Spectral properties of Google matrix of Wikipedia and other networks; Springer; European Physical Journal B - Condensed Matter; 86; 5; 5-2013; 193-203 1434-6028 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1212.1068 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1140%2Fepjb%2Fe2013-31090-8 info:eu-repo/semantics/altIdentifier/doi/10.1140/epjb/e2013-31090-8 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270104954339328 |
score |
13.13397 |