Adaptive Simulation of the Internal Flow in a Rocket Nozzle

Autores
Garelli, Luciano; Rios Rodriguez, Gustavo Adolfo; Paz, Rodrigo Rafael; Storti, Mario Alberto
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This work is a first step in the understanding of the interaction process between internal shock waves and the flow transition inside of a rocket nozzle that develops during the engine start-up phase or when the nozzle is operated at over-expanded conditions. In many cases, this transition in the flow pattern produces side loads in the nozzle due to an asymmetric pressure distribution on the wall, being harmful for the rocket´s integrity. To understand this phenomenon, a numerical simulation is performed by solving the three-dimensional Euler equations on unstructured tetrahedral meshes. With this model the computational cost to solve the equations significantly increases, therefore parallel processing is required. Also, an unsteady  h-adaptive refinement strategy is used jointly with a Streamline
Upwind Petrov-Galerkin and a discontinuity capturing scheme, both to keep the size of the fluid flow problem bounded and to sharply resolve the shock wave pattern. The mesh adaptation strategy is introduced. Since its performance is a major concern in the solution of unsteady flow problems, some implementation issues about the data structure chosen to represent the mesh are discussed. Average pressure distributions computed at the wall and the axis of the
nozzle for various pressure ratios are analyzed based on experimental and numerical results from other authors.
Fil: Garelli, Luciano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones En Metodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones En Metodos Computacionales; Argentina
Fil: Rios Rodriguez, Gustavo Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones En Metodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones En Metodos Computacionales; Argentina
Fil: Paz, Rodrigo Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones En Metodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones En Metodos Computacionales; Argentina
Fil: Storti, Mario Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones En Metodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones En Metodos Computacionales; Argentina
Materia
Rocket Nozzle
Shock Wave Transition
Adaptive Refinement
Unstructured Grids
Mesh Data Structures
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/19830

id CONICETDig_0ba2e6fa4976c7fb02f58ee00270ae3c
oai_identifier_str oai:ri.conicet.gov.ar:11336/19830
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Adaptive Simulation of the Internal Flow in a Rocket NozzleGarelli, LucianoRios Rodriguez, Gustavo AdolfoPaz, Rodrigo RafaelStorti, Mario AlbertoRocket NozzleShock Wave TransitionAdaptive RefinementUnstructured GridsMesh Data Structureshttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2This work is a first step in the understanding of the interaction process between internal shock waves and the flow transition inside of a rocket nozzle that develops during the engine start-up phase or when the nozzle is operated at over-expanded conditions. In many cases, this transition in the flow pattern produces side loads in the nozzle due to an asymmetric pressure distribution on the wall, being harmful for the rocket´s integrity. To understand this phenomenon, a numerical simulation is performed by solving the three-dimensional Euler equations on unstructured tetrahedral meshes. With this model the computational cost to solve the equations significantly increases, therefore parallel processing is required. Also, an unsteady  h-adaptive refinement strategy is used jointly with a Streamline<br />Upwind Petrov-Galerkin and a discontinuity capturing scheme, both to keep the size of the fluid flow problem bounded and to sharply resolve the shock wave pattern. The mesh adaptation strategy is introduced. Since its performance is a major concern in the solution of unsteady flow problems, some implementation issues about the data structure chosen to represent the mesh are discussed. Average pressure distributions computed at the wall and the axis of the<br />nozzle for various pressure ratios are analyzed based on experimental and numerical results from other authors.Fil: Garelli, Luciano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones En Metodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones En Metodos Computacionales; ArgentinaFil: Rios Rodriguez, Gustavo Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones En Metodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones En Metodos Computacionales; ArgentinaFil: Paz, Rodrigo Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones En Metodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones En Metodos Computacionales; ArgentinaFil: Storti, Mario Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones En Metodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones En Metodos Computacionales; ArgentinaPlanta Piloto de Ingeniería Química2014-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19830Garelli, Luciano; Rios Rodriguez, Gustavo Adolfo; Paz, Rodrigo Rafael; Storti, Mario Alberto; Adaptive Simulation of the Internal Flow in a Rocket Nozzle; Planta Piloto de Ingeniería Química; Latin American Applied Research; 44; 3; 7-2014; 267-2760327-07931851-8796CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.laar.uns.edu.ar/indexes/artic_v4403/44_03_267.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:11:45Zoai:ri.conicet.gov.ar:11336/19830instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:11:45.726CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Adaptive Simulation of the Internal Flow in a Rocket Nozzle
title Adaptive Simulation of the Internal Flow in a Rocket Nozzle
spellingShingle Adaptive Simulation of the Internal Flow in a Rocket Nozzle
Garelli, Luciano
Rocket Nozzle
Shock Wave Transition
Adaptive Refinement
Unstructured Grids
Mesh Data Structures
title_short Adaptive Simulation of the Internal Flow in a Rocket Nozzle
title_full Adaptive Simulation of the Internal Flow in a Rocket Nozzle
title_fullStr Adaptive Simulation of the Internal Flow in a Rocket Nozzle
title_full_unstemmed Adaptive Simulation of the Internal Flow in a Rocket Nozzle
title_sort Adaptive Simulation of the Internal Flow in a Rocket Nozzle
dc.creator.none.fl_str_mv Garelli, Luciano
Rios Rodriguez, Gustavo Adolfo
Paz, Rodrigo Rafael
Storti, Mario Alberto
author Garelli, Luciano
author_facet Garelli, Luciano
Rios Rodriguez, Gustavo Adolfo
Paz, Rodrigo Rafael
Storti, Mario Alberto
author_role author
author2 Rios Rodriguez, Gustavo Adolfo
Paz, Rodrigo Rafael
Storti, Mario Alberto
author2_role author
author
author
dc.subject.none.fl_str_mv Rocket Nozzle
Shock Wave Transition
Adaptive Refinement
Unstructured Grids
Mesh Data Structures
topic Rocket Nozzle
Shock Wave Transition
Adaptive Refinement
Unstructured Grids
Mesh Data Structures
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv This work is a first step in the understanding of the interaction process between internal shock waves and the flow transition inside of a rocket nozzle that develops during the engine start-up phase or when the nozzle is operated at over-expanded conditions. In many cases, this transition in the flow pattern produces side loads in the nozzle due to an asymmetric pressure distribution on the wall, being harmful for the rocket´s integrity. To understand this phenomenon, a numerical simulation is performed by solving the three-dimensional Euler equations on unstructured tetrahedral meshes. With this model the computational cost to solve the equations significantly increases, therefore parallel processing is required. Also, an unsteady  h-adaptive refinement strategy is used jointly with a Streamline<br />Upwind Petrov-Galerkin and a discontinuity capturing scheme, both to keep the size of the fluid flow problem bounded and to sharply resolve the shock wave pattern. The mesh adaptation strategy is introduced. Since its performance is a major concern in the solution of unsteady flow problems, some implementation issues about the data structure chosen to represent the mesh are discussed. Average pressure distributions computed at the wall and the axis of the<br />nozzle for various pressure ratios are analyzed based on experimental and numerical results from other authors.
Fil: Garelli, Luciano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones En Metodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones En Metodos Computacionales; Argentina
Fil: Rios Rodriguez, Gustavo Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones En Metodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones En Metodos Computacionales; Argentina
Fil: Paz, Rodrigo Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones En Metodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones En Metodos Computacionales; Argentina
Fil: Storti, Mario Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones En Metodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones En Metodos Computacionales; Argentina
description This work is a first step in the understanding of the interaction process between internal shock waves and the flow transition inside of a rocket nozzle that develops during the engine start-up phase or when the nozzle is operated at over-expanded conditions. In many cases, this transition in the flow pattern produces side loads in the nozzle due to an asymmetric pressure distribution on the wall, being harmful for the rocket´s integrity. To understand this phenomenon, a numerical simulation is performed by solving the three-dimensional Euler equations on unstructured tetrahedral meshes. With this model the computational cost to solve the equations significantly increases, therefore parallel processing is required. Also, an unsteady  h-adaptive refinement strategy is used jointly with a Streamline<br />Upwind Petrov-Galerkin and a discontinuity capturing scheme, both to keep the size of the fluid flow problem bounded and to sharply resolve the shock wave pattern. The mesh adaptation strategy is introduced. Since its performance is a major concern in the solution of unsteady flow problems, some implementation issues about the data structure chosen to represent the mesh are discussed. Average pressure distributions computed at the wall and the axis of the<br />nozzle for various pressure ratios are analyzed based on experimental and numerical results from other authors.
publishDate 2014
dc.date.none.fl_str_mv 2014-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/19830
Garelli, Luciano; Rios Rodriguez, Gustavo Adolfo; Paz, Rodrigo Rafael; Storti, Mario Alberto; Adaptive Simulation of the Internal Flow in a Rocket Nozzle; Planta Piloto de Ingeniería Química; Latin American Applied Research; 44; 3; 7-2014; 267-276
0327-0793
1851-8796
CONICET Digital
CONICET
url http://hdl.handle.net/11336/19830
identifier_str_mv Garelli, Luciano; Rios Rodriguez, Gustavo Adolfo; Paz, Rodrigo Rafael; Storti, Mario Alberto; Adaptive Simulation of the Internal Flow in a Rocket Nozzle; Planta Piloto de Ingeniería Química; Latin American Applied Research; 44; 3; 7-2014; 267-276
0327-0793
1851-8796
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.laar.uns.edu.ar/indexes/artic_v4403/44_03_267.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Planta Piloto de Ingeniería Química
publisher.none.fl_str_mv Planta Piloto de Ingeniería Química
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980606187667456
score 12.993085