Adaptive Simulation of the Internal Flow in a Rocket Nozzle
- Autores
- Garelli, Luciano; Rios Rodriguez, Gustavo Adolfo; Paz, Rodrigo Rafael; Storti, Mario Alberto
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This work is a first step in the understanding of the interaction process between internal shock waves and the flow transition inside of a rocket nozzle that develops during the engine start-up phase or when the nozzle is operated at over-expanded conditions. In many cases, this transition in the flow pattern produces side loads in the nozzle due to an asymmetric pressure distribution on the wall, being harmful for the rocket´s integrity. To understand this phenomenon, a numerical simulation is performed by solving the three-dimensional Euler equations on unstructured tetrahedral meshes. With this model the computational cost to solve the equations significantly increases, therefore parallel processing is required. Also, an unsteady h-adaptive refinement strategy is used jointly with a Streamline
Upwind Petrov-Galerkin and a discontinuity capturing scheme, both to keep the size of the fluid flow problem bounded and to sharply resolve the shock wave pattern. The mesh adaptation strategy is introduced. Since its performance is a major concern in the solution of unsteady flow problems, some implementation issues about the data structure chosen to represent the mesh are discussed. Average pressure distributions computed at the wall and the axis of the
nozzle for various pressure ratios are analyzed based on experimental and numerical results from other authors.
Fil: Garelli, Luciano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones En Metodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones En Metodos Computacionales; Argentina
Fil: Rios Rodriguez, Gustavo Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones En Metodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones En Metodos Computacionales; Argentina
Fil: Paz, Rodrigo Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones En Metodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones En Metodos Computacionales; Argentina
Fil: Storti, Mario Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones En Metodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones En Metodos Computacionales; Argentina - Materia
-
Rocket Nozzle
Shock Wave Transition
Adaptive Refinement
Unstructured Grids
Mesh Data Structures - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/19830
Ver los metadatos del registro completo
id |
CONICETDig_0ba2e6fa4976c7fb02f58ee00270ae3c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/19830 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Adaptive Simulation of the Internal Flow in a Rocket NozzleGarelli, LucianoRios Rodriguez, Gustavo AdolfoPaz, Rodrigo RafaelStorti, Mario AlbertoRocket NozzleShock Wave TransitionAdaptive RefinementUnstructured GridsMesh Data Structureshttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2This work is a first step in the understanding of the interaction process between internal shock waves and the flow transition inside of a rocket nozzle that develops during the engine start-up phase or when the nozzle is operated at over-expanded conditions. In many cases, this transition in the flow pattern produces side loads in the nozzle due to an asymmetric pressure distribution on the wall, being harmful for the rocket´s integrity. To understand this phenomenon, a numerical simulation is performed by solving the three-dimensional Euler equations on unstructured tetrahedral meshes. With this model the computational cost to solve the equations significantly increases, therefore parallel processing is required. Also, an unsteady h-adaptive refinement strategy is used jointly with a Streamline<br />Upwind Petrov-Galerkin and a discontinuity capturing scheme, both to keep the size of the fluid flow problem bounded and to sharply resolve the shock wave pattern. The mesh adaptation strategy is introduced. Since its performance is a major concern in the solution of unsteady flow problems, some implementation issues about the data structure chosen to represent the mesh are discussed. Average pressure distributions computed at the wall and the axis of the<br />nozzle for various pressure ratios are analyzed based on experimental and numerical results from other authors.Fil: Garelli, Luciano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones En Metodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones En Metodos Computacionales; ArgentinaFil: Rios Rodriguez, Gustavo Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones En Metodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones En Metodos Computacionales; ArgentinaFil: Paz, Rodrigo Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones En Metodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones En Metodos Computacionales; ArgentinaFil: Storti, Mario Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones En Metodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones En Metodos Computacionales; ArgentinaPlanta Piloto de Ingeniería Química2014-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19830Garelli, Luciano; Rios Rodriguez, Gustavo Adolfo; Paz, Rodrigo Rafael; Storti, Mario Alberto; Adaptive Simulation of the Internal Flow in a Rocket Nozzle; Planta Piloto de Ingeniería Química; Latin American Applied Research; 44; 3; 7-2014; 267-2760327-07931851-8796CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.laar.uns.edu.ar/indexes/artic_v4403/44_03_267.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:11:45Zoai:ri.conicet.gov.ar:11336/19830instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:11:45.726CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Adaptive Simulation of the Internal Flow in a Rocket Nozzle |
title |
Adaptive Simulation of the Internal Flow in a Rocket Nozzle |
spellingShingle |
Adaptive Simulation of the Internal Flow in a Rocket Nozzle Garelli, Luciano Rocket Nozzle Shock Wave Transition Adaptive Refinement Unstructured Grids Mesh Data Structures |
title_short |
Adaptive Simulation of the Internal Flow in a Rocket Nozzle |
title_full |
Adaptive Simulation of the Internal Flow in a Rocket Nozzle |
title_fullStr |
Adaptive Simulation of the Internal Flow in a Rocket Nozzle |
title_full_unstemmed |
Adaptive Simulation of the Internal Flow in a Rocket Nozzle |
title_sort |
Adaptive Simulation of the Internal Flow in a Rocket Nozzle |
dc.creator.none.fl_str_mv |
Garelli, Luciano Rios Rodriguez, Gustavo Adolfo Paz, Rodrigo Rafael Storti, Mario Alberto |
author |
Garelli, Luciano |
author_facet |
Garelli, Luciano Rios Rodriguez, Gustavo Adolfo Paz, Rodrigo Rafael Storti, Mario Alberto |
author_role |
author |
author2 |
Rios Rodriguez, Gustavo Adolfo Paz, Rodrigo Rafael Storti, Mario Alberto |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Rocket Nozzle Shock Wave Transition Adaptive Refinement Unstructured Grids Mesh Data Structures |
topic |
Rocket Nozzle Shock Wave Transition Adaptive Refinement Unstructured Grids Mesh Data Structures |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.3 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This work is a first step in the understanding of the interaction process between internal shock waves and the flow transition inside of a rocket nozzle that develops during the engine start-up phase or when the nozzle is operated at over-expanded conditions. In many cases, this transition in the flow pattern produces side loads in the nozzle due to an asymmetric pressure distribution on the wall, being harmful for the rocket´s integrity. To understand this phenomenon, a numerical simulation is performed by solving the three-dimensional Euler equations on unstructured tetrahedral meshes. With this model the computational cost to solve the equations significantly increases, therefore parallel processing is required. Also, an unsteady h-adaptive refinement strategy is used jointly with a Streamline<br />Upwind Petrov-Galerkin and a discontinuity capturing scheme, both to keep the size of the fluid flow problem bounded and to sharply resolve the shock wave pattern. The mesh adaptation strategy is introduced. Since its performance is a major concern in the solution of unsteady flow problems, some implementation issues about the data structure chosen to represent the mesh are discussed. Average pressure distributions computed at the wall and the axis of the<br />nozzle for various pressure ratios are analyzed based on experimental and numerical results from other authors. Fil: Garelli, Luciano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones En Metodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones En Metodos Computacionales; Argentina Fil: Rios Rodriguez, Gustavo Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones En Metodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones En Metodos Computacionales; Argentina Fil: Paz, Rodrigo Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones En Metodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones En Metodos Computacionales; Argentina Fil: Storti, Mario Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones En Metodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones En Metodos Computacionales; Argentina |
description |
This work is a first step in the understanding of the interaction process between internal shock waves and the flow transition inside of a rocket nozzle that develops during the engine start-up phase or when the nozzle is operated at over-expanded conditions. In many cases, this transition in the flow pattern produces side loads in the nozzle due to an asymmetric pressure distribution on the wall, being harmful for the rocket´s integrity. To understand this phenomenon, a numerical simulation is performed by solving the three-dimensional Euler equations on unstructured tetrahedral meshes. With this model the computational cost to solve the equations significantly increases, therefore parallel processing is required. Also, an unsteady h-adaptive refinement strategy is used jointly with a Streamline<br />Upwind Petrov-Galerkin and a discontinuity capturing scheme, both to keep the size of the fluid flow problem bounded and to sharply resolve the shock wave pattern. The mesh adaptation strategy is introduced. Since its performance is a major concern in the solution of unsteady flow problems, some implementation issues about the data structure chosen to represent the mesh are discussed. Average pressure distributions computed at the wall and the axis of the<br />nozzle for various pressure ratios are analyzed based on experimental and numerical results from other authors. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/19830 Garelli, Luciano; Rios Rodriguez, Gustavo Adolfo; Paz, Rodrigo Rafael; Storti, Mario Alberto; Adaptive Simulation of the Internal Flow in a Rocket Nozzle; Planta Piloto de Ingeniería Química; Latin American Applied Research; 44; 3; 7-2014; 267-276 0327-0793 1851-8796 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/19830 |
identifier_str_mv |
Garelli, Luciano; Rios Rodriguez, Gustavo Adolfo; Paz, Rodrigo Rafael; Storti, Mario Alberto; Adaptive Simulation of the Internal Flow in a Rocket Nozzle; Planta Piloto de Ingeniería Química; Latin American Applied Research; 44; 3; 7-2014; 267-276 0327-0793 1851-8796 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.laar.uns.edu.ar/indexes/artic_v4403/44_03_267.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Planta Piloto de Ingeniería Química |
publisher.none.fl_str_mv |
Planta Piloto de Ingeniería Química |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980606187667456 |
score |
12.993085 |