Guía para el análisis de datos espaciales: Aplicaciones en agricultura

Autores
Córdoba, Mariano; Paccioretti, Pablo Ariel; Giannini Kurina, Franca; Bruno, Cecilia Ines; Balzarini, Monica Graciela
Año de publicación
2020
Idioma
español castellano
Tipo de recurso
libro
Estado
versión publicada
Descripción
En las últimas décadas se ha impulsado el desarrollo y la utilización de nuevas tecnologías que permiten capturar datos espaciales, i.e. datos de una variable regionalizada o asociados a una localización en el espacio.La infraestructura de datos espaciales es cada vez mayor en tamaño y calidad, especialmente la asociada a la generación de datos que provienen de sensores ya sea remotos o proximales. Los volúmenes de datos espaciales no sólo son vastos y variados, sino que también, en la mayoría de los escenarios, son accesibles. Estos datos generan nuevas oportunidades para la investigación en agricultura.La variabilidad en los procesos aleatorios que generan datos espaciales se modela con diversas herramientas de la Estadística Espacial y se representa gráficamente en mapas de variabilidad espacial donde puede observarse cómo cambian los valores de una o más variables aleatorias según su posición en el espacio.Aún cuando se estudian dominios espaciales continuos con alta densidad de datos, usualmente no existen observaciones de la variable de interés para todos las localizaciones o sitios del espacio analizado; así se hace necesario obtener predicciones espaciales, i.e. predecir el valor de la variable en sitios sin datos. Con grillas de predicción densa, es posible obtener mapas de contorno casi continuos espacialmente.Con varias variables para cada sitio, una de ellas interpretada como resultante de un proceso y otras como explicativas o potenciales predictores, es posible obtener predicciones espaciales a partir de modelos que consideran la correlación espacial de los datos. Los modelos pueden estimarse tanto en un marco teórico frecuentista (Cressie y Wikle, 2015; Schabenberger y Gotway, 2005) como desde el marco teórico bayesiano (Correa Morales et al., 2018). También, desde la Ciencia de Datos con base computacional, se encuentran disponibles algoritmos de aprendizaje automático que incorporan la espacialidad en el análisis de datos (Li et al., 2011).En esta guía se ilustra el manejo y procesamiento de datos espaciales con distintos métodos estadísticos y su aplicación en agricultura. El texto está organizado en tres partes; la primera contiene bases conceptuales para el análisis de datos georreferenciados provenientes de procesos espaciales continuos. La segunda, la implementación de protocolos de análisis completos sobre datos distribuidos a escala fina en el espacio, con códigos de programa listos para ejecutar en el software estadístico R (R. C. Team, 2019) y en el software InfoStat (Di Rienzo et al., 2019). La tercera parte del texto ilustra la implementación del manejo y análisis de datos distribuidos a escala regional con códigos en R. La versión digital de este libro puede obtenerse desde www.agro.unc.edu.ar/~estadisticaaplicada donde también se encuentran los códigos de programación y los datos usados en este texto.
Fil: Córdoba, Mariano. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina
Fil: Paccioretti, Pablo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; Argentina
Fil: Giannini Kurina, Franca. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; Argentina
Fil: Bruno, Cecilia Ines. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina
Fil: Balzarini, Monica Graciela. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina
Materia
Variabilidad espacial
Geoestadística
Modelos predictivos
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/195087

id CONICETDig_a0d7aeeb5c228699fb32fe92e4f5b6e9
oai_identifier_str oai:ri.conicet.gov.ar:11336/195087
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Guía para el análisis de datos espaciales: Aplicaciones en agriculturaCórdoba, MarianoPaccioretti, Pablo ArielGiannini Kurina, FrancaBruno, Cecilia InesBalzarini, Monica GracielaVariabilidad espacialGeoestadísticaModelos predictivoshttps://purl.org/becyt/ford/4.5https://purl.org/becyt/ford/4En las últimas décadas se ha impulsado el desarrollo y la utilización de nuevas tecnologías que permiten capturar datos espaciales, i.e. datos de una variable regionalizada o asociados a una localización en el espacio.La infraestructura de datos espaciales es cada vez mayor en tamaño y calidad, especialmente la asociada a la generación de datos que provienen de sensores ya sea remotos o proximales. Los volúmenes de datos espaciales no sólo son vastos y variados, sino que también, en la mayoría de los escenarios, son accesibles. Estos datos generan nuevas oportunidades para la investigación en agricultura.La variabilidad en los procesos aleatorios que generan datos espaciales se modela con diversas herramientas de la Estadística Espacial y se representa gráficamente en mapas de variabilidad espacial donde puede observarse cómo cambian los valores de una o más variables aleatorias según su posición en el espacio.Aún cuando se estudian dominios espaciales continuos con alta densidad de datos, usualmente no existen observaciones de la variable de interés para todos las localizaciones o sitios del espacio analizado; así se hace necesario obtener predicciones espaciales, i.e. predecir el valor de la variable en sitios sin datos. Con grillas de predicción densa, es posible obtener mapas de contorno casi continuos espacialmente.Con varias variables para cada sitio, una de ellas interpretada como resultante de un proceso y otras como explicativas o potenciales predictores, es posible obtener predicciones espaciales a partir de modelos que consideran la correlación espacial de los datos. Los modelos pueden estimarse tanto en un marco teórico frecuentista (Cressie y Wikle, 2015; Schabenberger y Gotway, 2005) como desde el marco teórico bayesiano (Correa Morales et al., 2018). También, desde la Ciencia de Datos con base computacional, se encuentran disponibles algoritmos de aprendizaje automático que incorporan la espacialidad en el análisis de datos (Li et al., 2011).En esta guía se ilustra el manejo y procesamiento de datos espaciales con distintos métodos estadísticos y su aplicación en agricultura. El texto está organizado en tres partes; la primera contiene bases conceptuales para el análisis de datos georreferenciados provenientes de procesos espaciales continuos. La segunda, la implementación de protocolos de análisis completos sobre datos distribuidos a escala fina en el espacio, con códigos de programa listos para ejecutar en el software estadístico R (R. C. Team, 2019) y en el software InfoStat (Di Rienzo et al., 2019). La tercera parte del texto ilustra la implementación del manejo y análisis de datos distribuidos a escala regional con códigos en R. La versión digital de este libro puede obtenerse desde www.agro.unc.edu.ar/~estadisticaaplicada donde también se encuentran los códigos de programación y los datos usados en este texto.Fil: Córdoba, Mariano. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; ArgentinaFil: Paccioretti, Pablo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; ArgentinaFil: Giannini Kurina, Franca. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; ArgentinaFil: Bruno, Cecilia Ines. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; ArgentinaFil: Balzarini, Monica Graciela. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; ArgentinaBrujas2020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookinfo:ar-repo/semantics/librohttp://purl.org/coar/resource_type/c_2f33application/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/195087Córdoba, Mariano; Paccioretti, Pablo Ariel; Giannini Kurina, Franca; Bruno, Cecilia Ines; Balzarini, Monica Graciela; Guía para el análisis de datos espaciales: Aplicaciones en agricultura; Brujas; 2020; 250978-987-760-272-2CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/http://www.agro.unc.edu.ar/~estadisticaaplicada/GpADEAA/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:09:32Zoai:ri.conicet.gov.ar:11336/195087instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:09:32.647CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Guía para el análisis de datos espaciales: Aplicaciones en agricultura
title Guía para el análisis de datos espaciales: Aplicaciones en agricultura
spellingShingle Guía para el análisis de datos espaciales: Aplicaciones en agricultura
Córdoba, Mariano
Variabilidad espacial
Geoestadística
Modelos predictivos
title_short Guía para el análisis de datos espaciales: Aplicaciones en agricultura
title_full Guía para el análisis de datos espaciales: Aplicaciones en agricultura
title_fullStr Guía para el análisis de datos espaciales: Aplicaciones en agricultura
title_full_unstemmed Guía para el análisis de datos espaciales: Aplicaciones en agricultura
title_sort Guía para el análisis de datos espaciales: Aplicaciones en agricultura
dc.creator.none.fl_str_mv Córdoba, Mariano
Paccioretti, Pablo Ariel
Giannini Kurina, Franca
Bruno, Cecilia Ines
Balzarini, Monica Graciela
author Córdoba, Mariano
author_facet Córdoba, Mariano
Paccioretti, Pablo Ariel
Giannini Kurina, Franca
Bruno, Cecilia Ines
Balzarini, Monica Graciela
author_role author
author2 Paccioretti, Pablo Ariel
Giannini Kurina, Franca
Bruno, Cecilia Ines
Balzarini, Monica Graciela
author2_role author
author
author
author
dc.subject.none.fl_str_mv Variabilidad espacial
Geoestadística
Modelos predictivos
topic Variabilidad espacial
Geoestadística
Modelos predictivos
purl_subject.fl_str_mv https://purl.org/becyt/ford/4.5
https://purl.org/becyt/ford/4
dc.description.none.fl_txt_mv En las últimas décadas se ha impulsado el desarrollo y la utilización de nuevas tecnologías que permiten capturar datos espaciales, i.e. datos de una variable regionalizada o asociados a una localización en el espacio.La infraestructura de datos espaciales es cada vez mayor en tamaño y calidad, especialmente la asociada a la generación de datos que provienen de sensores ya sea remotos o proximales. Los volúmenes de datos espaciales no sólo son vastos y variados, sino que también, en la mayoría de los escenarios, son accesibles. Estos datos generan nuevas oportunidades para la investigación en agricultura.La variabilidad en los procesos aleatorios que generan datos espaciales se modela con diversas herramientas de la Estadística Espacial y se representa gráficamente en mapas de variabilidad espacial donde puede observarse cómo cambian los valores de una o más variables aleatorias según su posición en el espacio.Aún cuando se estudian dominios espaciales continuos con alta densidad de datos, usualmente no existen observaciones de la variable de interés para todos las localizaciones o sitios del espacio analizado; así se hace necesario obtener predicciones espaciales, i.e. predecir el valor de la variable en sitios sin datos. Con grillas de predicción densa, es posible obtener mapas de contorno casi continuos espacialmente.Con varias variables para cada sitio, una de ellas interpretada como resultante de un proceso y otras como explicativas o potenciales predictores, es posible obtener predicciones espaciales a partir de modelos que consideran la correlación espacial de los datos. Los modelos pueden estimarse tanto en un marco teórico frecuentista (Cressie y Wikle, 2015; Schabenberger y Gotway, 2005) como desde el marco teórico bayesiano (Correa Morales et al., 2018). También, desde la Ciencia de Datos con base computacional, se encuentran disponibles algoritmos de aprendizaje automático que incorporan la espacialidad en el análisis de datos (Li et al., 2011).En esta guía se ilustra el manejo y procesamiento de datos espaciales con distintos métodos estadísticos y su aplicación en agricultura. El texto está organizado en tres partes; la primera contiene bases conceptuales para el análisis de datos georreferenciados provenientes de procesos espaciales continuos. La segunda, la implementación de protocolos de análisis completos sobre datos distribuidos a escala fina en el espacio, con códigos de programa listos para ejecutar en el software estadístico R (R. C. Team, 2019) y en el software InfoStat (Di Rienzo et al., 2019). La tercera parte del texto ilustra la implementación del manejo y análisis de datos distribuidos a escala regional con códigos en R. La versión digital de este libro puede obtenerse desde www.agro.unc.edu.ar/~estadisticaaplicada donde también se encuentran los códigos de programación y los datos usados en este texto.
Fil: Córdoba, Mariano. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina
Fil: Paccioretti, Pablo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; Argentina
Fil: Giannini Kurina, Franca. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; Argentina
Fil: Bruno, Cecilia Ines. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina
Fil: Balzarini, Monica Graciela. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina
description En las últimas décadas se ha impulsado el desarrollo y la utilización de nuevas tecnologías que permiten capturar datos espaciales, i.e. datos de una variable regionalizada o asociados a una localización en el espacio.La infraestructura de datos espaciales es cada vez mayor en tamaño y calidad, especialmente la asociada a la generación de datos que provienen de sensores ya sea remotos o proximales. Los volúmenes de datos espaciales no sólo son vastos y variados, sino que también, en la mayoría de los escenarios, son accesibles. Estos datos generan nuevas oportunidades para la investigación en agricultura.La variabilidad en los procesos aleatorios que generan datos espaciales se modela con diversas herramientas de la Estadística Espacial y se representa gráficamente en mapas de variabilidad espacial donde puede observarse cómo cambian los valores de una o más variables aleatorias según su posición en el espacio.Aún cuando se estudian dominios espaciales continuos con alta densidad de datos, usualmente no existen observaciones de la variable de interés para todos las localizaciones o sitios del espacio analizado; así se hace necesario obtener predicciones espaciales, i.e. predecir el valor de la variable en sitios sin datos. Con grillas de predicción densa, es posible obtener mapas de contorno casi continuos espacialmente.Con varias variables para cada sitio, una de ellas interpretada como resultante de un proceso y otras como explicativas o potenciales predictores, es posible obtener predicciones espaciales a partir de modelos que consideran la correlación espacial de los datos. Los modelos pueden estimarse tanto en un marco teórico frecuentista (Cressie y Wikle, 2015; Schabenberger y Gotway, 2005) como desde el marco teórico bayesiano (Correa Morales et al., 2018). También, desde la Ciencia de Datos con base computacional, se encuentran disponibles algoritmos de aprendizaje automático que incorporan la espacialidad en el análisis de datos (Li et al., 2011).En esta guía se ilustra el manejo y procesamiento de datos espaciales con distintos métodos estadísticos y su aplicación en agricultura. El texto está organizado en tres partes; la primera contiene bases conceptuales para el análisis de datos georreferenciados provenientes de procesos espaciales continuos. La segunda, la implementación de protocolos de análisis completos sobre datos distribuidos a escala fina en el espacio, con códigos de programa listos para ejecutar en el software estadístico R (R. C. Team, 2019) y en el software InfoStat (Di Rienzo et al., 2019). La tercera parte del texto ilustra la implementación del manejo y análisis de datos distribuidos a escala regional con códigos en R. La versión digital de este libro puede obtenerse desde www.agro.unc.edu.ar/~estadisticaaplicada donde también se encuentran los códigos de programación y los datos usados en este texto.
publishDate 2020
dc.date.none.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/book
info:ar-repo/semantics/libro
http://purl.org/coar/resource_type/c_2f33
status_str publishedVersion
format book
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/195087
Córdoba, Mariano; Paccioretti, Pablo Ariel; Giannini Kurina, Franca; Bruno, Cecilia Ines; Balzarini, Monica Graciela; Guía para el análisis de datos espaciales: Aplicaciones en agricultura; Brujas; 2020; 250
978-987-760-272-2
CONICET Digital
CONICET
url http://hdl.handle.net/11336/195087
identifier_str_mv Córdoba, Mariano; Paccioretti, Pablo Ariel; Giannini Kurina, Franca; Bruno, Cecilia Ines; Balzarini, Monica Graciela; Guía para el análisis de datos espaciales: Aplicaciones en agricultura; Brujas; 2020; 250
978-987-760-272-2
CONICET Digital
CONICET
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.agro.unc.edu.ar/~estadisticaaplicada/GpADEAA/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Brujas
publisher.none.fl_str_mv Brujas
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270085039783936
score 13.13397