Guía para el análisis de datos espaciales en agricultura
- Autores
- Córdoba, Mariano; Paccioretti, Pablo Ariel; Giannini Kurina, Franca; Bruno, Cecilia Ines; Balzarini, Monica Graciela
- Año de publicación
- 2019
- Idioma
- español castellano
- Tipo de recurso
- libro
- Estado
- versión publicada
- Descripción
- En las últimas décadas se ha impulsado el desarrollo y la utilización de nuevas tecnologías que permiten capturar datos espaciales, i.e. datos de una variable regionalizada o asociados a una localización en el espacio. La infraestructura de datos espaciales es cada vez mayor en tamaño y calidad, especialmente la asociada a la generación de datos que provienen de sensores ya sea remotos o proximales. Los volúmenes de datos espaciales no sólo son vastos y variados, sino que también, en la mayoría de los escenarios, son accesibles. Estos datos generan nuevas oportunidades para la investigación en agricultura.La variabilidad en los procesos aleatorios que generan datos espaciales se modela con diversas herramientas de la Estadística Espacial y se representa gráficamente en mapas de variabilidad espacial donde puede observarse cómo cambian los valores de una o más variables aleatorias según su posición en el espacio. Aún cuando se estudian dominios espaciales continuos con alta densidad de datos, usualmente no existen observaciones de la variable de interés para todos las localizaciones o sitios del espacio analizado; así se hace necesario obtener predicciones espaciales, i.e. predecir el valor de la variable en sitios sin datos. Con grillas de predicción densa, es posible obtener mapas de contorno casi continuos espacialmente.
Fil: Córdoba, Mariano. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina
Fil: Paccioretti, Pablo Ariel. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Giannini Kurina, Franca. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; Argentina
Fil: Bruno, Cecilia Ines. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina
Fil: Balzarini, Monica Graciela. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina - Materia
-
DATOS ESPACIALES
GRILLAS DE PREDICCIÓN - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/128391
Ver los metadatos del registro completo
id |
CONICETDig_2e29cc818f6fa67692ffb8e97a456c29 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/128391 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Guía para el análisis de datos espaciales en agriculturaCórdoba, MarianoPaccioretti, Pablo ArielGiannini Kurina, FrancaBruno, Cecilia InesBalzarini, Monica GracielaDATOS ESPACIALESGRILLAS DE PREDICCIÓNhttps://purl.org/becyt/ford/4.5https://purl.org/becyt/ford/4En las últimas décadas se ha impulsado el desarrollo y la utilización de nuevas tecnologías que permiten capturar datos espaciales, i.e. datos de una variable regionalizada o asociados a una localización en el espacio. La infraestructura de datos espaciales es cada vez mayor en tamaño y calidad, especialmente la asociada a la generación de datos que provienen de sensores ya sea remotos o proximales. Los volúmenes de datos espaciales no sólo son vastos y variados, sino que también, en la mayoría de los escenarios, son accesibles. Estos datos generan nuevas oportunidades para la investigación en agricultura.La variabilidad en los procesos aleatorios que generan datos espaciales se modela con diversas herramientas de la Estadística Espacial y se representa gráficamente en mapas de variabilidad espacial donde puede observarse cómo cambian los valores de una o más variables aleatorias según su posición en el espacio. Aún cuando se estudian dominios espaciales continuos con alta densidad de datos, usualmente no existen observaciones de la variable de interés para todos las localizaciones o sitios del espacio analizado; así se hace necesario obtener predicciones espaciales, i.e. predecir el valor de la variable en sitios sin datos. Con grillas de predicción densa, es posible obtener mapas de contorno casi continuos espacialmente.Fil: Córdoba, Mariano. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; ArgentinaFil: Paccioretti, Pablo Ariel. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Giannini Kurina, Franca. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; ArgentinaFil: Bruno, Cecilia Ines. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; ArgentinaFil: Balzarini, Monica Graciela. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; ArgentinaBrujas2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookinfo:ar-repo/semantics/librohttp://purl.org/coar/resource_type/c_2f33application/pdfapplication/pdfhttp://hdl.handle.net/11336/128391Córdoba, Mariano; Paccioretti, Pablo Ariel; Giannini Kurina, Franca; Bruno, Cecilia Ines; Balzarini, Monica Graciela; Guía para el análisis de datos espaciales en agricultura; Brujas; 2019; 250978-987-760-272-2CONICET DigitalCONICETspainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:09:16Zoai:ri.conicet.gov.ar:11336/128391instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:09:16.921CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Guía para el análisis de datos espaciales en agricultura |
title |
Guía para el análisis de datos espaciales en agricultura |
spellingShingle |
Guía para el análisis de datos espaciales en agricultura Córdoba, Mariano DATOS ESPACIALES GRILLAS DE PREDICCIÓN |
title_short |
Guía para el análisis de datos espaciales en agricultura |
title_full |
Guía para el análisis de datos espaciales en agricultura |
title_fullStr |
Guía para el análisis de datos espaciales en agricultura |
title_full_unstemmed |
Guía para el análisis de datos espaciales en agricultura |
title_sort |
Guía para el análisis de datos espaciales en agricultura |
dc.creator.none.fl_str_mv |
Córdoba, Mariano Paccioretti, Pablo Ariel Giannini Kurina, Franca Bruno, Cecilia Ines Balzarini, Monica Graciela |
author |
Córdoba, Mariano |
author_facet |
Córdoba, Mariano Paccioretti, Pablo Ariel Giannini Kurina, Franca Bruno, Cecilia Ines Balzarini, Monica Graciela |
author_role |
author |
author2 |
Paccioretti, Pablo Ariel Giannini Kurina, Franca Bruno, Cecilia Ines Balzarini, Monica Graciela |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
DATOS ESPACIALES GRILLAS DE PREDICCIÓN |
topic |
DATOS ESPACIALES GRILLAS DE PREDICCIÓN |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.5 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
En las últimas décadas se ha impulsado el desarrollo y la utilización de nuevas tecnologías que permiten capturar datos espaciales, i.e. datos de una variable regionalizada o asociados a una localización en el espacio. La infraestructura de datos espaciales es cada vez mayor en tamaño y calidad, especialmente la asociada a la generación de datos que provienen de sensores ya sea remotos o proximales. Los volúmenes de datos espaciales no sólo son vastos y variados, sino que también, en la mayoría de los escenarios, son accesibles. Estos datos generan nuevas oportunidades para la investigación en agricultura.La variabilidad en los procesos aleatorios que generan datos espaciales se modela con diversas herramientas de la Estadística Espacial y se representa gráficamente en mapas de variabilidad espacial donde puede observarse cómo cambian los valores de una o más variables aleatorias según su posición en el espacio. Aún cuando se estudian dominios espaciales continuos con alta densidad de datos, usualmente no existen observaciones de la variable de interés para todos las localizaciones o sitios del espacio analizado; así se hace necesario obtener predicciones espaciales, i.e. predecir el valor de la variable en sitios sin datos. Con grillas de predicción densa, es posible obtener mapas de contorno casi continuos espacialmente. Fil: Córdoba, Mariano. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina Fil: Paccioretti, Pablo Ariel. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Giannini Kurina, Franca. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; Argentina Fil: Bruno, Cecilia Ines. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina Fil: Balzarini, Monica Graciela. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina |
description |
En las últimas décadas se ha impulsado el desarrollo y la utilización de nuevas tecnologías que permiten capturar datos espaciales, i.e. datos de una variable regionalizada o asociados a una localización en el espacio. La infraestructura de datos espaciales es cada vez mayor en tamaño y calidad, especialmente la asociada a la generación de datos que provienen de sensores ya sea remotos o proximales. Los volúmenes de datos espaciales no sólo son vastos y variados, sino que también, en la mayoría de los escenarios, son accesibles. Estos datos generan nuevas oportunidades para la investigación en agricultura.La variabilidad en los procesos aleatorios que generan datos espaciales se modela con diversas herramientas de la Estadística Espacial y se representa gráficamente en mapas de variabilidad espacial donde puede observarse cómo cambian los valores de una o más variables aleatorias según su posición en el espacio. Aún cuando se estudian dominios espaciales continuos con alta densidad de datos, usualmente no existen observaciones de la variable de interés para todos las localizaciones o sitios del espacio analizado; así se hace necesario obtener predicciones espaciales, i.e. predecir el valor de la variable en sitios sin datos. Con grillas de predicción densa, es posible obtener mapas de contorno casi continuos espacialmente. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/book info:ar-repo/semantics/libro http://purl.org/coar/resource_type/c_2f33 |
status_str |
publishedVersion |
format |
book |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/128391 Córdoba, Mariano; Paccioretti, Pablo Ariel; Giannini Kurina, Franca; Bruno, Cecilia Ines; Balzarini, Monica Graciela; Guía para el análisis de datos espaciales en agricultura; Brujas; 2019; 250 978-987-760-272-2 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/128391 |
identifier_str_mv |
Córdoba, Mariano; Paccioretti, Pablo Ariel; Giannini Kurina, Franca; Bruno, Cecilia Ines; Balzarini, Monica Graciela; Guía para el análisis de datos espaciales en agricultura; Brujas; 2019; 250 978-987-760-272-2 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Brujas |
publisher.none.fl_str_mv |
Brujas |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270074544586752 |
score |
13.13397 |