Is The Alexander-Orbach Conjecture Suitable For Diffusion In Correlated Percolation Clusters
- Autores
- Cruz, Ommar; Hidalgo, Ricardo; Alas, Salomón; Cordero, Salomón; Meraz, Laura; López, Raúl Horacio; Dominguez, Armando
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- How does a particle diffuse inside a percolation cluster? This question is of both scientific and practical importance, e.g. in drug-controlled release and vapour adsorption. Diffusion in fractal media is characterized by the fracton dimension, ds. The Alexander and Orbach conjecture indicates that ds = 4/3 for diffusion in classical percolation clusters and, after much research on the subject, it is still provides a very good approximation for ds in the case of uncorrelated percolation cluster structures. However, what happens to the value of ds when a particle is moving inside a correlated percolation cluster? In this work, this problem is studied via Monte Carlo computer simulation. Our results show that the Alexander and Orbach conjecture is not always fulfilled.
Fil: Cruz, Ommar. Universidad Autonoma Metropolitana; México
Fil: Hidalgo, Ricardo. Universidad Autonoma Metropolitana; México
Fil: Alas, Salomón. Universidad Autonoma Metropolitana; México
Fil: Cordero, Salomón. Universidad Autonoma Metropolitana; México
Fil: Meraz, Laura. CIIEMAD-IPN; México
Fil: López, Raúl Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; Argentina. Universidad Nacional de San Luis; Argentina
Fil: Dominguez, Armando. Universidad Autonoma Metropolitana; México - Materia
-
Alexander-Orbach Conjecture
Diffusion
Correlated
Percolation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/14083
Ver los metadatos del registro completo
id |
CONICETDig_a0c1c5a2a3a86c6e3aaebf3cc1faa148 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/14083 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Is The Alexander-Orbach Conjecture Suitable For Diffusion In Correlated Percolation ClustersCruz, OmmarHidalgo, RicardoAlas, SalomónCordero, SalomónMeraz, LauraLópez, Raúl HoracioDominguez, ArmandoAlexander-Orbach ConjectureDiffusionCorrelatedPercolationhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1How does a particle diffuse inside a percolation cluster? This question is of both scientific and practical importance, e.g. in drug-controlled release and vapour adsorption. Diffusion in fractal media is characterized by the fracton dimension, ds. The Alexander and Orbach conjecture indicates that ds = 4/3 for diffusion in classical percolation clusters and, after much research on the subject, it is still provides a very good approximation for ds in the case of uncorrelated percolation cluster structures. However, what happens to the value of ds when a particle is moving inside a correlated percolation cluster? In this work, this problem is studied via Monte Carlo computer simulation. Our results show that the Alexander and Orbach conjecture is not always fulfilled.Fil: Cruz, Ommar. Universidad Autonoma Metropolitana; MéxicoFil: Hidalgo, Ricardo. Universidad Autonoma Metropolitana; MéxicoFil: Alas, Salomón. Universidad Autonoma Metropolitana; MéxicoFil: Cordero, Salomón. Universidad Autonoma Metropolitana; MéxicoFil: Meraz, Laura. CIIEMAD-IPN; MéxicoFil: López, Raúl Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; Argentina. Universidad Nacional de San Luis; ArgentinaFil: Dominguez, Armando. Universidad Autonoma Metropolitana; MéxicoSage Publications2011-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14083Cruz, Ommar; Hidalgo, Ricardo; Alas, Salomón; Cordero, Salomón; Meraz, Laura; et al.; Is The Alexander-Orbach Conjecture Suitable For Diffusion In Correlated Percolation Clusters; Sage Publications; Adsorption Science & Technology; 29; 7; 7-2011; 663-6760263-6174enginfo:eu-repo/semantics/altIdentifier/url/http://journals.sagepub.com/doi/10.1260/0263-6174.29.7.663info:eu-repo/semantics/altIdentifier/arxiv/https://doi.org/10.1260/0263-6174.29.7.663info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:51:09Zoai:ri.conicet.gov.ar:11336/14083instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:51:09.425CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Is The Alexander-Orbach Conjecture Suitable For Diffusion In Correlated Percolation Clusters |
title |
Is The Alexander-Orbach Conjecture Suitable For Diffusion In Correlated Percolation Clusters |
spellingShingle |
Is The Alexander-Orbach Conjecture Suitable For Diffusion In Correlated Percolation Clusters Cruz, Ommar Alexander-Orbach Conjecture Diffusion Correlated Percolation |
title_short |
Is The Alexander-Orbach Conjecture Suitable For Diffusion In Correlated Percolation Clusters |
title_full |
Is The Alexander-Orbach Conjecture Suitable For Diffusion In Correlated Percolation Clusters |
title_fullStr |
Is The Alexander-Orbach Conjecture Suitable For Diffusion In Correlated Percolation Clusters |
title_full_unstemmed |
Is The Alexander-Orbach Conjecture Suitable For Diffusion In Correlated Percolation Clusters |
title_sort |
Is The Alexander-Orbach Conjecture Suitable For Diffusion In Correlated Percolation Clusters |
dc.creator.none.fl_str_mv |
Cruz, Ommar Hidalgo, Ricardo Alas, Salomón Cordero, Salomón Meraz, Laura López, Raúl Horacio Dominguez, Armando |
author |
Cruz, Ommar |
author_facet |
Cruz, Ommar Hidalgo, Ricardo Alas, Salomón Cordero, Salomón Meraz, Laura López, Raúl Horacio Dominguez, Armando |
author_role |
author |
author2 |
Hidalgo, Ricardo Alas, Salomón Cordero, Salomón Meraz, Laura López, Raúl Horacio Dominguez, Armando |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
Alexander-Orbach Conjecture Diffusion Correlated Percolation |
topic |
Alexander-Orbach Conjecture Diffusion Correlated Percolation |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
How does a particle diffuse inside a percolation cluster? This question is of both scientific and practical importance, e.g. in drug-controlled release and vapour adsorption. Diffusion in fractal media is characterized by the fracton dimension, ds. The Alexander and Orbach conjecture indicates that ds = 4/3 for diffusion in classical percolation clusters and, after much research on the subject, it is still provides a very good approximation for ds in the case of uncorrelated percolation cluster structures. However, what happens to the value of ds when a particle is moving inside a correlated percolation cluster? In this work, this problem is studied via Monte Carlo computer simulation. Our results show that the Alexander and Orbach conjecture is not always fulfilled. Fil: Cruz, Ommar. Universidad Autonoma Metropolitana; México Fil: Hidalgo, Ricardo. Universidad Autonoma Metropolitana; México Fil: Alas, Salomón. Universidad Autonoma Metropolitana; México Fil: Cordero, Salomón. Universidad Autonoma Metropolitana; México Fil: Meraz, Laura. CIIEMAD-IPN; México Fil: López, Raúl Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; Argentina. Universidad Nacional de San Luis; Argentina Fil: Dominguez, Armando. Universidad Autonoma Metropolitana; México |
description |
How does a particle diffuse inside a percolation cluster? This question is of both scientific and practical importance, e.g. in drug-controlled release and vapour adsorption. Diffusion in fractal media is characterized by the fracton dimension, ds. The Alexander and Orbach conjecture indicates that ds = 4/3 for diffusion in classical percolation clusters and, after much research on the subject, it is still provides a very good approximation for ds in the case of uncorrelated percolation cluster structures. However, what happens to the value of ds when a particle is moving inside a correlated percolation cluster? In this work, this problem is studied via Monte Carlo computer simulation. Our results show that the Alexander and Orbach conjecture is not always fulfilled. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/14083 Cruz, Ommar; Hidalgo, Ricardo; Alas, Salomón; Cordero, Salomón; Meraz, Laura; et al.; Is The Alexander-Orbach Conjecture Suitable For Diffusion In Correlated Percolation Clusters; Sage Publications; Adsorption Science & Technology; 29; 7; 7-2011; 663-676 0263-6174 |
url |
http://hdl.handle.net/11336/14083 |
identifier_str_mv |
Cruz, Ommar; Hidalgo, Ricardo; Alas, Salomón; Cordero, Salomón; Meraz, Laura; et al.; Is The Alexander-Orbach Conjecture Suitable For Diffusion In Correlated Percolation Clusters; Sage Publications; Adsorption Science & Technology; 29; 7; 7-2011; 663-676 0263-6174 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journals.sagepub.com/doi/10.1260/0263-6174.29.7.663 info:eu-repo/semantics/altIdentifier/arxiv/https://doi.org/10.1260/0263-6174.29.7.663 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Sage Publications |
publisher.none.fl_str_mv |
Sage Publications |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083037002989568 |
score |
13.22299 |