b-Coloring is NP-hard on Co-bipartite Graphs and Polytime Solvable on Tree Cographs
- Autores
- Bonomo, Flavia; Schaudt, Oliver; Stein, Maya; Valencia Pabon, Mario
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A b-coloring of a graph is a proper coloring such that every color class contains a vertex that is adjacent to all other color classes. The b-chromatic number of a graph G, denoted by χb(G), is the maximum number t such that G admits a b-coloring with t colors. A graph G is called b-continuous if it admits a b-coloring with t colors, for every t = χ (G), . . . , χb(G), and b-monotonic if χb(H1) ≥ χb(H2) for every induced subgraph H1 of G, and every induced subgraph H2 of H1. We investigate the b-chromatic number of graphs with stability number two. These are exactly the complements of triangle-free graphs, thus including all complements of bipartite graphs. The main results of this work are the following: (1) We characterize the b-colorings of a graph with stability number two in terms of matchings with no augmenting paths of length one or three. We derive that graphs with stability number two are b-continuous and b-monotonic. (2) We prove that it is NP-complete to decide whether the b-chromatic number of co-bipartite graph is at least a given threshold. (3) We describe a polynomial time dynamic programming algorithm to compute the b-chromatic number of co-trees. (4) Extending several previous results, we show that there is a polynomial time dynamic programming algorithm for computing the b-chromatic number of tree-cographs. Moreover, we show that tree-cographs are b-continuous and b-monotonic.
Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Schaudt, Oliver. Universite Pierre et Marie Curie; Francia
Fil: Stein, Maya. Universidad de Chile; Chile
Fil: Valencia Pabon, Mario. Universite de Paris 13-Nord; Francia - Materia
-
B-Coloring
Minimum Maxinal Matching
Co-Bipartite Graphs
Graphs with Stability Number Two - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18897
Ver los metadatos del registro completo
id |
CONICETDig_9fb61b1c25ff19ad1a24475257c09dbd |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18897 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
b-Coloring is NP-hard on Co-bipartite Graphs and Polytime Solvable on Tree CographsBonomo, FlaviaSchaudt, OliverStein, MayaValencia Pabon, MarioB-ColoringMinimum Maxinal MatchingCo-Bipartite GraphsGraphs with Stability Number Twohttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1A b-coloring of a graph is a proper coloring such that every color class contains a vertex that is adjacent to all other color classes. The b-chromatic number of a graph G, denoted by χb(G), is the maximum number t such that G admits a b-coloring with t colors. A graph G is called b-continuous if it admits a b-coloring with t colors, for every t = χ (G), . . . , χb(G), and b-monotonic if χb(H1) ≥ χb(H2) for every induced subgraph H1 of G, and every induced subgraph H2 of H1. We investigate the b-chromatic number of graphs with stability number two. These are exactly the complements of triangle-free graphs, thus including all complements of bipartite graphs. The main results of this work are the following: (1) We characterize the b-colorings of a graph with stability number two in terms of matchings with no augmenting paths of length one or three. We derive that graphs with stability number two are b-continuous and b-monotonic. (2) We prove that it is NP-complete to decide whether the b-chromatic number of co-bipartite graph is at least a given threshold. (3) We describe a polynomial time dynamic programming algorithm to compute the b-chromatic number of co-trees. (4) Extending several previous results, we show that there is a polynomial time dynamic programming algorithm for computing the b-chromatic number of tree-cographs. Moreover, we show that tree-cographs are b-continuous and b-monotonic.Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Schaudt, Oliver. Universite Pierre et Marie Curie; FranciaFil: Stein, Maya. Universidad de Chile; ChileFil: Valencia Pabon, Mario. Universite de Paris 13-Nord; FranciaSpringer2015-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18897Bonomo, Flavia; Schaudt, Oliver; Stein, Maya; Valencia Pabon, Mario; b-Coloring is NP-hard on Co-bipartite Graphs and Polytime Solvable on Tree Cographs; Springer; Algorithmica; 73; 2; 10-2015; 289-3050178-46171432-0541CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00453-014-9921-5info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00453-014-9921-5info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1310.8313info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:13:16Zoai:ri.conicet.gov.ar:11336/18897instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:13:16.394CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
b-Coloring is NP-hard on Co-bipartite Graphs and Polytime Solvable on Tree Cographs |
title |
b-Coloring is NP-hard on Co-bipartite Graphs and Polytime Solvable on Tree Cographs |
spellingShingle |
b-Coloring is NP-hard on Co-bipartite Graphs and Polytime Solvable on Tree Cographs Bonomo, Flavia B-Coloring Minimum Maxinal Matching Co-Bipartite Graphs Graphs with Stability Number Two |
title_short |
b-Coloring is NP-hard on Co-bipartite Graphs and Polytime Solvable on Tree Cographs |
title_full |
b-Coloring is NP-hard on Co-bipartite Graphs and Polytime Solvable on Tree Cographs |
title_fullStr |
b-Coloring is NP-hard on Co-bipartite Graphs and Polytime Solvable on Tree Cographs |
title_full_unstemmed |
b-Coloring is NP-hard on Co-bipartite Graphs and Polytime Solvable on Tree Cographs |
title_sort |
b-Coloring is NP-hard on Co-bipartite Graphs and Polytime Solvable on Tree Cographs |
dc.creator.none.fl_str_mv |
Bonomo, Flavia Schaudt, Oliver Stein, Maya Valencia Pabon, Mario |
author |
Bonomo, Flavia |
author_facet |
Bonomo, Flavia Schaudt, Oliver Stein, Maya Valencia Pabon, Mario |
author_role |
author |
author2 |
Schaudt, Oliver Stein, Maya Valencia Pabon, Mario |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
B-Coloring Minimum Maxinal Matching Co-Bipartite Graphs Graphs with Stability Number Two |
topic |
B-Coloring Minimum Maxinal Matching Co-Bipartite Graphs Graphs with Stability Number Two |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A b-coloring of a graph is a proper coloring such that every color class contains a vertex that is adjacent to all other color classes. The b-chromatic number of a graph G, denoted by χb(G), is the maximum number t such that G admits a b-coloring with t colors. A graph G is called b-continuous if it admits a b-coloring with t colors, for every t = χ (G), . . . , χb(G), and b-monotonic if χb(H1) ≥ χb(H2) for every induced subgraph H1 of G, and every induced subgraph H2 of H1. We investigate the b-chromatic number of graphs with stability number two. These are exactly the complements of triangle-free graphs, thus including all complements of bipartite graphs. The main results of this work are the following: (1) We characterize the b-colorings of a graph with stability number two in terms of matchings with no augmenting paths of length one or three. We derive that graphs with stability number two are b-continuous and b-monotonic. (2) We prove that it is NP-complete to decide whether the b-chromatic number of co-bipartite graph is at least a given threshold. (3) We describe a polynomial time dynamic programming algorithm to compute the b-chromatic number of co-trees. (4) Extending several previous results, we show that there is a polynomial time dynamic programming algorithm for computing the b-chromatic number of tree-cographs. Moreover, we show that tree-cographs are b-continuous and b-monotonic. Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Schaudt, Oliver. Universite Pierre et Marie Curie; Francia Fil: Stein, Maya. Universidad de Chile; Chile Fil: Valencia Pabon, Mario. Universite de Paris 13-Nord; Francia |
description |
A b-coloring of a graph is a proper coloring such that every color class contains a vertex that is adjacent to all other color classes. The b-chromatic number of a graph G, denoted by χb(G), is the maximum number t such that G admits a b-coloring with t colors. A graph G is called b-continuous if it admits a b-coloring with t colors, for every t = χ (G), . . . , χb(G), and b-monotonic if χb(H1) ≥ χb(H2) for every induced subgraph H1 of G, and every induced subgraph H2 of H1. We investigate the b-chromatic number of graphs with stability number two. These are exactly the complements of triangle-free graphs, thus including all complements of bipartite graphs. The main results of this work are the following: (1) We characterize the b-colorings of a graph with stability number two in terms of matchings with no augmenting paths of length one or three. We derive that graphs with stability number two are b-continuous and b-monotonic. (2) We prove that it is NP-complete to decide whether the b-chromatic number of co-bipartite graph is at least a given threshold. (3) We describe a polynomial time dynamic programming algorithm to compute the b-chromatic number of co-trees. (4) Extending several previous results, we show that there is a polynomial time dynamic programming algorithm for computing the b-chromatic number of tree-cographs. Moreover, we show that tree-cographs are b-continuous and b-monotonic. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18897 Bonomo, Flavia; Schaudt, Oliver; Stein, Maya; Valencia Pabon, Mario; b-Coloring is NP-hard on Co-bipartite Graphs and Polytime Solvable on Tree Cographs; Springer; Algorithmica; 73; 2; 10-2015; 289-305 0178-4617 1432-0541 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18897 |
identifier_str_mv |
Bonomo, Flavia; Schaudt, Oliver; Stein, Maya; Valencia Pabon, Mario; b-Coloring is NP-hard on Co-bipartite Graphs and Polytime Solvable on Tree Cographs; Springer; Algorithmica; 73; 2; 10-2015; 289-305 0178-4617 1432-0541 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00453-014-9921-5 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00453-014-9921-5 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1310.8313 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083280661643264 |
score |
13.22299 |