Two-pore channel 1 and Ca2+ release-activated Ca2+ channels contribute to the acrosomal pH-dependent intracellular Ca2+ increase in mouse sperm

Autores
Oliver, Enrique I.; Jabloñski, Martina; Buffone, Mariano Gabriel; Darszon, Alberto
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The acrosome is a lysosome-related vesicular organelle located in the sperm head. The acrosomal reaction (AR) is an exocytic process mediated by Ca2+ and essential for mammalian fertilization. Recent findings support the importance of acrosomal alkalinization for the AR. Mibefradil (Mib) and NNC 55-0396 (NNC) are two amphipathic weak bases that block the sperm-specific Ca2+ channel (CatSper) and induce acrosomal pH (pHa ) increase by accumulating in the acrosomal lumen of mammalian sperm. This accumulation and pHa elevation increase the intracellular Ca2+ concentration ([Ca2+ ]i ) and trigger the AR by unknown mechanisms of Ca2+ transport. Here, we investigated the pathways associated with the pHa increase-induced Ca2+ signals using mouse sperm as a model. To address these questions, we used single-cell Ca2+ imaging, the lysosomotropic agent Gly-Phe-β-naphthylamide (GPN) and pharmacological tools. Our findings show that Mib and NNC increase pHa and release acrosomal Ca2+ without compromising acrosomal membrane integrity. Our GPN results indicate that the osmotic component does not significantly contribute to acrosomal Ca2+ release caused by pHa rise. Inhibition of two-pore channel 1 (TPC1) channels reduced the [Ca2+ ]i increase stimulated by acrosomal alkalinization. In addition, blockage of Ca2+ release-activated Ca2+ (CRAC) channels diminished Ca2+ uptake triggered by pHa alkalinization. Finally, our findings contribute to understanding how pHa controls acrosomal Ca2+ efflux and extracellular Ca2+ entry during AR in mouse sperm. KEY POINTS: The acrosomal vesicle is a lysosome-related organelle located in the sperm head. The acrosome reaction (AR) is a highly regulated exocytic process mediated by Ca2+ , which is essential for fertilization. However, the molecular identity of Ca2+ transporters involved in the AR and their mechanisms to regulate Ca2+ fluxes are not fully understood. In mammalian sperm, acrosomal alkalinization induces intracellular Ca2+ concentration ([Ca2+ ]i ) increase and triggers the AR by unknown molecular mechanisms of Ca2+ transport. In this study, we explored the molecular mechanisms underlying Ca2+ signals caused by acrosomal alkalinization using mouse sperm as a model. TPC1 and CRAC channels contribute to [Ca2+ ]i elevation during acrosomal alkalinization. Our findings expand our understanding of how the acrosomal pH participates in the physiological induction of the AR.
Fil: Oliver, Enrique I.. Universidad Nacional Autónoma de México; México
Fil: Jabloñski, Martina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina
Fil: Buffone, Mariano Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina
Fil: Darszon, Alberto. Universidad Nacional Autónoma de México; México
Materia
CRAC CHANNELS
Ca2+ SIGNALS
sTPC1 CHANNEL
ACROSOMAL ALKALINIZATION
ACROSOMAL REACTION
ACROSOMAL VEHICLE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/233649

id CONICETDig_9f96922a786fec78b78d11e0750c5b2e
oai_identifier_str oai:ri.conicet.gov.ar:11336/233649
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Two-pore channel 1 and Ca2+ release-activated Ca2+ channels contribute to the acrosomal pH-dependent intracellular Ca2+ increase in mouse spermOliver, Enrique I.Jabloñski, MartinaBuffone, Mariano GabrielDarszon, AlbertoCRAC CHANNELSCa2+ SIGNALSsTPC1 CHANNELACROSOMAL ALKALINIZATIONACROSOMAL REACTIONACROSOMAL VEHICLEhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The acrosome is a lysosome-related vesicular organelle located in the sperm head. The acrosomal reaction (AR) is an exocytic process mediated by Ca2+ and essential for mammalian fertilization. Recent findings support the importance of acrosomal alkalinization for the AR. Mibefradil (Mib) and NNC 55-0396 (NNC) are two amphipathic weak bases that block the sperm-specific Ca2+ channel (CatSper) and induce acrosomal pH (pHa ) increase by accumulating in the acrosomal lumen of mammalian sperm. This accumulation and pHa elevation increase the intracellular Ca2+ concentration ([Ca2+ ]i ) and trigger the AR by unknown mechanisms of Ca2+ transport. Here, we investigated the pathways associated with the pHa increase-induced Ca2+ signals using mouse sperm as a model. To address these questions, we used single-cell Ca2+ imaging, the lysosomotropic agent Gly-Phe-β-naphthylamide (GPN) and pharmacological tools. Our findings show that Mib and NNC increase pHa and release acrosomal Ca2+ without compromising acrosomal membrane integrity. Our GPN results indicate that the osmotic component does not significantly contribute to acrosomal Ca2+ release caused by pHa rise. Inhibition of two-pore channel 1 (TPC1) channels reduced the [Ca2+ ]i increase stimulated by acrosomal alkalinization. In addition, blockage of Ca2+ release-activated Ca2+ (CRAC) channels diminished Ca2+ uptake triggered by pHa alkalinization. Finally, our findings contribute to understanding how pHa controls acrosomal Ca2+ efflux and extracellular Ca2+ entry during AR in mouse sperm. KEY POINTS: The acrosomal vesicle is a lysosome-related organelle located in the sperm head. The acrosome reaction (AR) is a highly regulated exocytic process mediated by Ca2+ , which is essential for fertilization. However, the molecular identity of Ca2+ transporters involved in the AR and their mechanisms to regulate Ca2+ fluxes are not fully understood. In mammalian sperm, acrosomal alkalinization induces intracellular Ca2+ concentration ([Ca2+ ]i ) increase and triggers the AR by unknown molecular mechanisms of Ca2+ transport. In this study, we explored the molecular mechanisms underlying Ca2+ signals caused by acrosomal alkalinization using mouse sperm as a model. TPC1 and CRAC channels contribute to [Ca2+ ]i elevation during acrosomal alkalinization. Our findings expand our understanding of how the acrosomal pH participates in the physiological induction of the AR.Fil: Oliver, Enrique I.. Universidad Nacional Autónoma de México; MéxicoFil: Jabloñski, Martina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Buffone, Mariano Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Darszon, Alberto. Universidad Nacional Autónoma de México; MéxicoJohn Wiley and Sons Inc2023info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/233649Oliver, Enrique I.; Jabloñski, Martina; Buffone, Mariano Gabriel; Darszon, Alberto; Two-pore channel 1 and Ca2+ release-activated Ca2+ channels contribute to the acrosomal pH-dependent intracellular Ca2+ increase in mouse sperm; John Wiley and Sons Inc; Journal of Physiology; 601; 14; 2023; 1-240022-37511469-7793CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://physoc.onlinelibrary.wiley.com/doi/10.1113/JP284247info:eu-repo/semantics/altIdentifier/doi/10.1113/JP284247info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:13:22Zoai:ri.conicet.gov.ar:11336/233649instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:13:23.077CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Two-pore channel 1 and Ca2+ release-activated Ca2+ channels contribute to the acrosomal pH-dependent intracellular Ca2+ increase in mouse sperm
title Two-pore channel 1 and Ca2+ release-activated Ca2+ channels contribute to the acrosomal pH-dependent intracellular Ca2+ increase in mouse sperm
spellingShingle Two-pore channel 1 and Ca2+ release-activated Ca2+ channels contribute to the acrosomal pH-dependent intracellular Ca2+ increase in mouse sperm
Oliver, Enrique I.
CRAC CHANNELS
Ca2+ SIGNALS
sTPC1 CHANNEL
ACROSOMAL ALKALINIZATION
ACROSOMAL REACTION
ACROSOMAL VEHICLE
title_short Two-pore channel 1 and Ca2+ release-activated Ca2+ channels contribute to the acrosomal pH-dependent intracellular Ca2+ increase in mouse sperm
title_full Two-pore channel 1 and Ca2+ release-activated Ca2+ channels contribute to the acrosomal pH-dependent intracellular Ca2+ increase in mouse sperm
title_fullStr Two-pore channel 1 and Ca2+ release-activated Ca2+ channels contribute to the acrosomal pH-dependent intracellular Ca2+ increase in mouse sperm
title_full_unstemmed Two-pore channel 1 and Ca2+ release-activated Ca2+ channels contribute to the acrosomal pH-dependent intracellular Ca2+ increase in mouse sperm
title_sort Two-pore channel 1 and Ca2+ release-activated Ca2+ channels contribute to the acrosomal pH-dependent intracellular Ca2+ increase in mouse sperm
dc.creator.none.fl_str_mv Oliver, Enrique I.
Jabloñski, Martina
Buffone, Mariano Gabriel
Darszon, Alberto
author Oliver, Enrique I.
author_facet Oliver, Enrique I.
Jabloñski, Martina
Buffone, Mariano Gabriel
Darszon, Alberto
author_role author
author2 Jabloñski, Martina
Buffone, Mariano Gabriel
Darszon, Alberto
author2_role author
author
author
dc.subject.none.fl_str_mv CRAC CHANNELS
Ca2+ SIGNALS
sTPC1 CHANNEL
ACROSOMAL ALKALINIZATION
ACROSOMAL REACTION
ACROSOMAL VEHICLE
topic CRAC CHANNELS
Ca2+ SIGNALS
sTPC1 CHANNEL
ACROSOMAL ALKALINIZATION
ACROSOMAL REACTION
ACROSOMAL VEHICLE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The acrosome is a lysosome-related vesicular organelle located in the sperm head. The acrosomal reaction (AR) is an exocytic process mediated by Ca2+ and essential for mammalian fertilization. Recent findings support the importance of acrosomal alkalinization for the AR. Mibefradil (Mib) and NNC 55-0396 (NNC) are two amphipathic weak bases that block the sperm-specific Ca2+ channel (CatSper) and induce acrosomal pH (pHa ) increase by accumulating in the acrosomal lumen of mammalian sperm. This accumulation and pHa elevation increase the intracellular Ca2+ concentration ([Ca2+ ]i ) and trigger the AR by unknown mechanisms of Ca2+ transport. Here, we investigated the pathways associated with the pHa increase-induced Ca2+ signals using mouse sperm as a model. To address these questions, we used single-cell Ca2+ imaging, the lysosomotropic agent Gly-Phe-β-naphthylamide (GPN) and pharmacological tools. Our findings show that Mib and NNC increase pHa and release acrosomal Ca2+ without compromising acrosomal membrane integrity. Our GPN results indicate that the osmotic component does not significantly contribute to acrosomal Ca2+ release caused by pHa rise. Inhibition of two-pore channel 1 (TPC1) channels reduced the [Ca2+ ]i increase stimulated by acrosomal alkalinization. In addition, blockage of Ca2+ release-activated Ca2+ (CRAC) channels diminished Ca2+ uptake triggered by pHa alkalinization. Finally, our findings contribute to understanding how pHa controls acrosomal Ca2+ efflux and extracellular Ca2+ entry during AR in mouse sperm. KEY POINTS: The acrosomal vesicle is a lysosome-related organelle located in the sperm head. The acrosome reaction (AR) is a highly regulated exocytic process mediated by Ca2+ , which is essential for fertilization. However, the molecular identity of Ca2+ transporters involved in the AR and their mechanisms to regulate Ca2+ fluxes are not fully understood. In mammalian sperm, acrosomal alkalinization induces intracellular Ca2+ concentration ([Ca2+ ]i ) increase and triggers the AR by unknown molecular mechanisms of Ca2+ transport. In this study, we explored the molecular mechanisms underlying Ca2+ signals caused by acrosomal alkalinization using mouse sperm as a model. TPC1 and CRAC channels contribute to [Ca2+ ]i elevation during acrosomal alkalinization. Our findings expand our understanding of how the acrosomal pH participates in the physiological induction of the AR.
Fil: Oliver, Enrique I.. Universidad Nacional Autónoma de México; México
Fil: Jabloñski, Martina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina
Fil: Buffone, Mariano Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina
Fil: Darszon, Alberto. Universidad Nacional Autónoma de México; México
description The acrosome is a lysosome-related vesicular organelle located in the sperm head. The acrosomal reaction (AR) is an exocytic process mediated by Ca2+ and essential for mammalian fertilization. Recent findings support the importance of acrosomal alkalinization for the AR. Mibefradil (Mib) and NNC 55-0396 (NNC) are two amphipathic weak bases that block the sperm-specific Ca2+ channel (CatSper) and induce acrosomal pH (pHa ) increase by accumulating in the acrosomal lumen of mammalian sperm. This accumulation and pHa elevation increase the intracellular Ca2+ concentration ([Ca2+ ]i ) and trigger the AR by unknown mechanisms of Ca2+ transport. Here, we investigated the pathways associated with the pHa increase-induced Ca2+ signals using mouse sperm as a model. To address these questions, we used single-cell Ca2+ imaging, the lysosomotropic agent Gly-Phe-β-naphthylamide (GPN) and pharmacological tools. Our findings show that Mib and NNC increase pHa and release acrosomal Ca2+ without compromising acrosomal membrane integrity. Our GPN results indicate that the osmotic component does not significantly contribute to acrosomal Ca2+ release caused by pHa rise. Inhibition of two-pore channel 1 (TPC1) channels reduced the [Ca2+ ]i increase stimulated by acrosomal alkalinization. In addition, blockage of Ca2+ release-activated Ca2+ (CRAC) channels diminished Ca2+ uptake triggered by pHa alkalinization. Finally, our findings contribute to understanding how pHa controls acrosomal Ca2+ efflux and extracellular Ca2+ entry during AR in mouse sperm. KEY POINTS: The acrosomal vesicle is a lysosome-related organelle located in the sperm head. The acrosome reaction (AR) is a highly regulated exocytic process mediated by Ca2+ , which is essential for fertilization. However, the molecular identity of Ca2+ transporters involved in the AR and their mechanisms to regulate Ca2+ fluxes are not fully understood. In mammalian sperm, acrosomal alkalinization induces intracellular Ca2+ concentration ([Ca2+ ]i ) increase and triggers the AR by unknown molecular mechanisms of Ca2+ transport. In this study, we explored the molecular mechanisms underlying Ca2+ signals caused by acrosomal alkalinization using mouse sperm as a model. TPC1 and CRAC channels contribute to [Ca2+ ]i elevation during acrosomal alkalinization. Our findings expand our understanding of how the acrosomal pH participates in the physiological induction of the AR.
publishDate 2023
dc.date.none.fl_str_mv 2023
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/233649
Oliver, Enrique I.; Jabloñski, Martina; Buffone, Mariano Gabriel; Darszon, Alberto; Two-pore channel 1 and Ca2+ release-activated Ca2+ channels contribute to the acrosomal pH-dependent intracellular Ca2+ increase in mouse sperm; John Wiley and Sons Inc; Journal of Physiology; 601; 14; 2023; 1-24
0022-3751
1469-7793
CONICET Digital
CONICET
url http://hdl.handle.net/11336/233649
identifier_str_mv Oliver, Enrique I.; Jabloñski, Martina; Buffone, Mariano Gabriel; Darszon, Alberto; Two-pore channel 1 and Ca2+ release-activated Ca2+ channels contribute to the acrosomal pH-dependent intracellular Ca2+ increase in mouse sperm; John Wiley and Sons Inc; Journal of Physiology; 601; 14; 2023; 1-24
0022-3751
1469-7793
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://physoc.onlinelibrary.wiley.com/doi/10.1113/JP284247
info:eu-repo/semantics/altIdentifier/doi/10.1113/JP284247
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv John Wiley and Sons Inc
publisher.none.fl_str_mv John Wiley and Sons Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614050137243648
score 13.070432