Bayesian optimization of crystallization processes to guarantee end-use product properties
- Autores
- Luna, Martín Francisco; Martínez, Ernesto Carlos
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- For pharmaceutical solid products, the issue of reproducibly obtaining their desired end-use properties depending on crystal size and form is the main problem to be addressed and solved in process development. Lacking a reliable first-principles model of a crystallization process, a Bayesian optimization algorithm is proposed. On this basis, a short sequence of experimental runs for pinpointing operating conditions that maximize the probability of successfully complying with end-use product properties is defined. Bayesian optimization can take advantage of the full information provided by the sequence of experiments made using a probabilistic model of the probability of success based on a one-class classification method. The proposed algorithm's performance is tested in silico using the crystallization and formulation of an API product where success is about fulfilling a dissolution profile as required by the FDA. Results obtained demonstrate that the sequence of generated experiments allows pinpointing operating conditions for reproducible quality.
Fil: Luna, Martín Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina - Materia
-
BAYESIAN OPTIMIZATION
OPTIMAL EXPERIMENTAL DESIGN
CRYSTALLIZATION PROCESSES
END-USE PRODUCT PROPERTIES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/113005
Ver los metadatos del registro completo
| id |
CONICETDig_9ef9d47659d90b8abe4bfb742c18d216 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/113005 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Bayesian optimization of crystallization processes to guarantee end-use product propertiesLuna, Martín FranciscoMartínez, Ernesto CarlosBAYESIAN OPTIMIZATIONOPTIMAL EXPERIMENTAL DESIGNCRYSTALLIZATION PROCESSESEND-USE PRODUCT PROPERTIEShttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2For pharmaceutical solid products, the issue of reproducibly obtaining their desired end-use properties depending on crystal size and form is the main problem to be addressed and solved in process development. Lacking a reliable first-principles model of a crystallization process, a Bayesian optimization algorithm is proposed. On this basis, a short sequence of experimental runs for pinpointing operating conditions that maximize the probability of successfully complying with end-use product properties is defined. Bayesian optimization can take advantage of the full information provided by the sequence of experiments made using a probabilistic model of the probability of success based on a one-class classification method. The proposed algorithm's performance is tested in silico using the crystallization and formulation of an API product where success is about fulfilling a dissolution profile as required by the FDA. Results obtained demonstrate that the sequence of generated experiments allows pinpointing operating conditions for reproducible quality.Fil: Luna, Martín Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaUniversidad Nacional del Sur2020-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/113005Luna, Martín Francisco; Martínez, Ernesto Carlos; Bayesian optimization of crystallization processes to guarantee end-use product properties; Universidad Nacional del Sur; Latin American Applied Research; 50; 2; 1-4-2020; 109-1140327-07931851-8796CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://laar.plapiqui.edu.ar/OJS/index.php/laar/article/view/388info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:03:51Zoai:ri.conicet.gov.ar:11336/113005instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:03:51.545CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Bayesian optimization of crystallization processes to guarantee end-use product properties |
| title |
Bayesian optimization of crystallization processes to guarantee end-use product properties |
| spellingShingle |
Bayesian optimization of crystallization processes to guarantee end-use product properties Luna, Martín Francisco BAYESIAN OPTIMIZATION OPTIMAL EXPERIMENTAL DESIGN CRYSTALLIZATION PROCESSES END-USE PRODUCT PROPERTIES |
| title_short |
Bayesian optimization of crystallization processes to guarantee end-use product properties |
| title_full |
Bayesian optimization of crystallization processes to guarantee end-use product properties |
| title_fullStr |
Bayesian optimization of crystallization processes to guarantee end-use product properties |
| title_full_unstemmed |
Bayesian optimization of crystallization processes to guarantee end-use product properties |
| title_sort |
Bayesian optimization of crystallization processes to guarantee end-use product properties |
| dc.creator.none.fl_str_mv |
Luna, Martín Francisco Martínez, Ernesto Carlos |
| author |
Luna, Martín Francisco |
| author_facet |
Luna, Martín Francisco Martínez, Ernesto Carlos |
| author_role |
author |
| author2 |
Martínez, Ernesto Carlos |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
BAYESIAN OPTIMIZATION OPTIMAL EXPERIMENTAL DESIGN CRYSTALLIZATION PROCESSES END-USE PRODUCT PROPERTIES |
| topic |
BAYESIAN OPTIMIZATION OPTIMAL EXPERIMENTAL DESIGN CRYSTALLIZATION PROCESSES END-USE PRODUCT PROPERTIES |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
For pharmaceutical solid products, the issue of reproducibly obtaining their desired end-use properties depending on crystal size and form is the main problem to be addressed and solved in process development. Lacking a reliable first-principles model of a crystallization process, a Bayesian optimization algorithm is proposed. On this basis, a short sequence of experimental runs for pinpointing operating conditions that maximize the probability of successfully complying with end-use product properties is defined. Bayesian optimization can take advantage of the full information provided by the sequence of experiments made using a probabilistic model of the probability of success based on a one-class classification method. The proposed algorithm's performance is tested in silico using the crystallization and formulation of an API product where success is about fulfilling a dissolution profile as required by the FDA. Results obtained demonstrate that the sequence of generated experiments allows pinpointing operating conditions for reproducible quality. Fil: Luna, Martín Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina |
| description |
For pharmaceutical solid products, the issue of reproducibly obtaining their desired end-use properties depending on crystal size and form is the main problem to be addressed and solved in process development. Lacking a reliable first-principles model of a crystallization process, a Bayesian optimization algorithm is proposed. On this basis, a short sequence of experimental runs for pinpointing operating conditions that maximize the probability of successfully complying with end-use product properties is defined. Bayesian optimization can take advantage of the full information provided by the sequence of experiments made using a probabilistic model of the probability of success based on a one-class classification method. The proposed algorithm's performance is tested in silico using the crystallization and formulation of an API product where success is about fulfilling a dissolution profile as required by the FDA. Results obtained demonstrate that the sequence of generated experiments allows pinpointing operating conditions for reproducible quality. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-04-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/113005 Luna, Martín Francisco; Martínez, Ernesto Carlos; Bayesian optimization of crystallization processes to guarantee end-use product properties; Universidad Nacional del Sur; Latin American Applied Research; 50; 2; 1-4-2020; 109-114 0327-0793 1851-8796 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/113005 |
| identifier_str_mv |
Luna, Martín Francisco; Martínez, Ernesto Carlos; Bayesian optimization of crystallization processes to guarantee end-use product properties; Universidad Nacional del Sur; Latin American Applied Research; 50; 2; 1-4-2020; 109-114 0327-0793 1851-8796 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://laar.plapiqui.edu.ar/OJS/index.php/laar/article/view/388 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad Nacional del Sur |
| publisher.none.fl_str_mv |
Universidad Nacional del Sur |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781281082277888 |
| score |
12.982451 |