Bayesian optimization of crystallization processes to guarantee end-use product properties

Autores
Luna, Martín Francisco; Martínez, Ernesto Carlos
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
For pharmaceutical solid products, the issue of reproducibly obtaining their desired end-use properties depending on crystal size and form is the main problem to be addressed and solved in process development. Lacking a reliable first-principles model of a crystallization process, a Bayesian optimization algorithm is proposed. On this basis, a short sequence of experimental runs for pinpointing operating conditions that maximize the probability of successfully complying with end-use product properties is defined. Bayesian optimization can take advantage of the full information provided by the sequence of experiments made using a probabilistic model of the probability of success based on a one-class classification method. The proposed algorithm's performance is tested in silico using the crystallization and formulation of an API product where success is about fulfilling a dissolution profile as required by the FDA. Results obtained demonstrate that the sequence of generated experiments allows pinpointing operating conditions for reproducible quality.
Fil: Luna, Martín Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Materia
BAYESIAN OPTIMIZATION
OPTIMAL EXPERIMENTAL DESIGN
CRYSTALLIZATION PROCESSES
END-USE PRODUCT PROPERTIES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/113005

id CONICETDig_9ef9d47659d90b8abe4bfb742c18d216
oai_identifier_str oai:ri.conicet.gov.ar:11336/113005
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Bayesian optimization of crystallization processes to guarantee end-use product propertiesLuna, Martín FranciscoMartínez, Ernesto CarlosBAYESIAN OPTIMIZATIONOPTIMAL EXPERIMENTAL DESIGNCRYSTALLIZATION PROCESSESEND-USE PRODUCT PROPERTIEShttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2For pharmaceutical solid products, the issue of reproducibly obtaining their desired end-use properties depending on crystal size and form is the main problem to be addressed and solved in process development. Lacking a reliable first-principles model of a crystallization process, a Bayesian optimization algorithm is proposed. On this basis, a short sequence of experimental runs for pinpointing operating conditions that maximize the probability of successfully complying with end-use product properties is defined. Bayesian optimization can take advantage of the full information provided by the sequence of experiments made using a probabilistic model of the probability of success based on a one-class classification method. The proposed algorithm's performance is tested in silico using the crystallization and formulation of an API product where success is about fulfilling a dissolution profile as required by the FDA. Results obtained demonstrate that the sequence of generated experiments allows pinpointing operating conditions for reproducible quality.Fil: Luna, Martín Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaUniversidad Nacional del Sur2020-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/113005Luna, Martín Francisco; Martínez, Ernesto Carlos; Bayesian optimization of crystallization processes to guarantee end-use product properties; Universidad Nacional del Sur; Latin American Applied Research; 50; 2; 1-4-2020; 109-1140327-07931851-8796CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://laar.plapiqui.edu.ar/OJS/index.php/laar/article/view/388info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:03:51Zoai:ri.conicet.gov.ar:11336/113005instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:03:51.545CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Bayesian optimization of crystallization processes to guarantee end-use product properties
title Bayesian optimization of crystallization processes to guarantee end-use product properties
spellingShingle Bayesian optimization of crystallization processes to guarantee end-use product properties
Luna, Martín Francisco
BAYESIAN OPTIMIZATION
OPTIMAL EXPERIMENTAL DESIGN
CRYSTALLIZATION PROCESSES
END-USE PRODUCT PROPERTIES
title_short Bayesian optimization of crystallization processes to guarantee end-use product properties
title_full Bayesian optimization of crystallization processes to guarantee end-use product properties
title_fullStr Bayesian optimization of crystallization processes to guarantee end-use product properties
title_full_unstemmed Bayesian optimization of crystallization processes to guarantee end-use product properties
title_sort Bayesian optimization of crystallization processes to guarantee end-use product properties
dc.creator.none.fl_str_mv Luna, Martín Francisco
Martínez, Ernesto Carlos
author Luna, Martín Francisco
author_facet Luna, Martín Francisco
Martínez, Ernesto Carlos
author_role author
author2 Martínez, Ernesto Carlos
author2_role author
dc.subject.none.fl_str_mv BAYESIAN OPTIMIZATION
OPTIMAL EXPERIMENTAL DESIGN
CRYSTALLIZATION PROCESSES
END-USE PRODUCT PROPERTIES
topic BAYESIAN OPTIMIZATION
OPTIMAL EXPERIMENTAL DESIGN
CRYSTALLIZATION PROCESSES
END-USE PRODUCT PROPERTIES
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv For pharmaceutical solid products, the issue of reproducibly obtaining their desired end-use properties depending on crystal size and form is the main problem to be addressed and solved in process development. Lacking a reliable first-principles model of a crystallization process, a Bayesian optimization algorithm is proposed. On this basis, a short sequence of experimental runs for pinpointing operating conditions that maximize the probability of successfully complying with end-use product properties is defined. Bayesian optimization can take advantage of the full information provided by the sequence of experiments made using a probabilistic model of the probability of success based on a one-class classification method. The proposed algorithm's performance is tested in silico using the crystallization and formulation of an API product where success is about fulfilling a dissolution profile as required by the FDA. Results obtained demonstrate that the sequence of generated experiments allows pinpointing operating conditions for reproducible quality.
Fil: Luna, Martín Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
description For pharmaceutical solid products, the issue of reproducibly obtaining their desired end-use properties depending on crystal size and form is the main problem to be addressed and solved in process development. Lacking a reliable first-principles model of a crystallization process, a Bayesian optimization algorithm is proposed. On this basis, a short sequence of experimental runs for pinpointing operating conditions that maximize the probability of successfully complying with end-use product properties is defined. Bayesian optimization can take advantage of the full information provided by the sequence of experiments made using a probabilistic model of the probability of success based on a one-class classification method. The proposed algorithm's performance is tested in silico using the crystallization and formulation of an API product where success is about fulfilling a dissolution profile as required by the FDA. Results obtained demonstrate that the sequence of generated experiments allows pinpointing operating conditions for reproducible quality.
publishDate 2020
dc.date.none.fl_str_mv 2020-04-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/113005
Luna, Martín Francisco; Martínez, Ernesto Carlos; Bayesian optimization of crystallization processes to guarantee end-use product properties; Universidad Nacional del Sur; Latin American Applied Research; 50; 2; 1-4-2020; 109-114
0327-0793
1851-8796
CONICET Digital
CONICET
url http://hdl.handle.net/11336/113005
identifier_str_mv Luna, Martín Francisco; Martínez, Ernesto Carlos; Bayesian optimization of crystallization processes to guarantee end-use product properties; Universidad Nacional del Sur; Latin American Applied Research; 50; 2; 1-4-2020; 109-114
0327-0793
1851-8796
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://laar.plapiqui.edu.ar/OJS/index.php/laar/article/view/388
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional del Sur
publisher.none.fl_str_mv Universidad Nacional del Sur
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781281082277888
score 12.982451