Sequential Bayesian Experimental Design for Process Optimization with Stochastic Binary Outcomes
- Autores
- Luna, Martín Francisco; Martínez, Ernesto Carlos
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- For innovative products, the issue of reproducibly obtaining their desired end-use properties at industrial scale is the main problem to be addressed and solved in process development. Lacking a reliable first-principles process model, a Bayesian optimization algorithm is proposed. On this basis, a short of sequence of experimental runs for pinpointing operating conditions that maximize the probability of successfully complying with end-use product properties is defined. Bayesian optimization is able to take advantage of the full information provided by the sequence of experiments made using a probabilistic model (Gaussian process) of the probability of success based on a one-class classification method. The metric which is maximized to decide the conditions for the next experiment is designed around the expected improvement for a binary response. The proposed algorithm's performance is demonstrated using simulation data from a fed-batch reactor for emulsion polymerization of styrene.
Fil: Luna, Martín Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina - Materia
-
BAYESIAN OPTIMIZATION
END-USE PRODUCT PROPERTIES
GAUSSIAN PROCESSES
ONE-CLASS CLASSIFICATION
SCALE-UP - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/87044
Ver los metadatos del registro completo
| id |
CONICETDig_b561d217af2f9e0a8beffb77310971af |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/87044 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Sequential Bayesian Experimental Design for Process Optimization with Stochastic Binary OutcomesLuna, Martín FranciscoMartínez, Ernesto CarlosBAYESIAN OPTIMIZATIONEND-USE PRODUCT PROPERTIESGAUSSIAN PROCESSESONE-CLASS CLASSIFICATIONSCALE-UPhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2For innovative products, the issue of reproducibly obtaining their desired end-use properties at industrial scale is the main problem to be addressed and solved in process development. Lacking a reliable first-principles process model, a Bayesian optimization algorithm is proposed. On this basis, a short of sequence of experimental runs for pinpointing operating conditions that maximize the probability of successfully complying with end-use product properties is defined. Bayesian optimization is able to take advantage of the full information provided by the sequence of experiments made using a probabilistic model (Gaussian process) of the probability of success based on a one-class classification method. The metric which is maximized to decide the conditions for the next experiment is designed around the expected improvement for a binary response. The proposed algorithm's performance is demonstrated using simulation data from a fed-batch reactor for emulsion polymerization of styrene.Fil: Luna, Martín Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaElsevier B.V.2018-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/87044Luna, Martín Francisco; Martínez, Ernesto Carlos; Sequential Bayesian Experimental Design for Process Optimization with Stochastic Binary Outcomes; Elsevier B.V.; Computer Aided Chemical Engineering; 43; 1-2018; 943-9481570-7946CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/B978-0-444-64235-6.50166-2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:49:31Zoai:ri.conicet.gov.ar:11336/87044instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:49:32.179CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Sequential Bayesian Experimental Design for Process Optimization with Stochastic Binary Outcomes |
| title |
Sequential Bayesian Experimental Design for Process Optimization with Stochastic Binary Outcomes |
| spellingShingle |
Sequential Bayesian Experimental Design for Process Optimization with Stochastic Binary Outcomes Luna, Martín Francisco BAYESIAN OPTIMIZATION END-USE PRODUCT PROPERTIES GAUSSIAN PROCESSES ONE-CLASS CLASSIFICATION SCALE-UP |
| title_short |
Sequential Bayesian Experimental Design for Process Optimization with Stochastic Binary Outcomes |
| title_full |
Sequential Bayesian Experimental Design for Process Optimization with Stochastic Binary Outcomes |
| title_fullStr |
Sequential Bayesian Experimental Design for Process Optimization with Stochastic Binary Outcomes |
| title_full_unstemmed |
Sequential Bayesian Experimental Design for Process Optimization with Stochastic Binary Outcomes |
| title_sort |
Sequential Bayesian Experimental Design for Process Optimization with Stochastic Binary Outcomes |
| dc.creator.none.fl_str_mv |
Luna, Martín Francisco Martínez, Ernesto Carlos |
| author |
Luna, Martín Francisco |
| author_facet |
Luna, Martín Francisco Martínez, Ernesto Carlos |
| author_role |
author |
| author2 |
Martínez, Ernesto Carlos |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
BAYESIAN OPTIMIZATION END-USE PRODUCT PROPERTIES GAUSSIAN PROCESSES ONE-CLASS CLASSIFICATION SCALE-UP |
| topic |
BAYESIAN OPTIMIZATION END-USE PRODUCT PROPERTIES GAUSSIAN PROCESSES ONE-CLASS CLASSIFICATION SCALE-UP |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
For innovative products, the issue of reproducibly obtaining their desired end-use properties at industrial scale is the main problem to be addressed and solved in process development. Lacking a reliable first-principles process model, a Bayesian optimization algorithm is proposed. On this basis, a short of sequence of experimental runs for pinpointing operating conditions that maximize the probability of successfully complying with end-use product properties is defined. Bayesian optimization is able to take advantage of the full information provided by the sequence of experiments made using a probabilistic model (Gaussian process) of the probability of success based on a one-class classification method. The metric which is maximized to decide the conditions for the next experiment is designed around the expected improvement for a binary response. The proposed algorithm's performance is demonstrated using simulation data from a fed-batch reactor for emulsion polymerization of styrene. Fil: Luna, Martín Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina |
| description |
For innovative products, the issue of reproducibly obtaining their desired end-use properties at industrial scale is the main problem to be addressed and solved in process development. Lacking a reliable first-principles process model, a Bayesian optimization algorithm is proposed. On this basis, a short of sequence of experimental runs for pinpointing operating conditions that maximize the probability of successfully complying with end-use product properties is defined. Bayesian optimization is able to take advantage of the full information provided by the sequence of experiments made using a probabilistic model (Gaussian process) of the probability of success based on a one-class classification method. The metric which is maximized to decide the conditions for the next experiment is designed around the expected improvement for a binary response. The proposed algorithm's performance is demonstrated using simulation data from a fed-batch reactor for emulsion polymerization of styrene. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/87044 Luna, Martín Francisco; Martínez, Ernesto Carlos; Sequential Bayesian Experimental Design for Process Optimization with Stochastic Binary Outcomes; Elsevier B.V.; Computer Aided Chemical Engineering; 43; 1-2018; 943-948 1570-7946 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/87044 |
| identifier_str_mv |
Luna, Martín Francisco; Martínez, Ernesto Carlos; Sequential Bayesian Experimental Design for Process Optimization with Stochastic Binary Outcomes; Elsevier B.V.; Computer Aided Chemical Engineering; 43; 1-2018; 943-948 1570-7946 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/B978-0-444-64235-6.50166-2 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier B.V. |
| publisher.none.fl_str_mv |
Elsevier B.V. |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848598076725395456 |
| score |
13.24909 |