Robust MPC suitable for closed-loop re-identification, based on probabilistic invariant sets
- Autores
- Anderson, Alejandro Luis; González, Alejandro Hernán; Ferramosca, Antonio; D'jorge, Agustina; Kofman, Ernesto Javier
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This work extends a recent set-based Model Predictive Control (MPC) scheme for closed loop re-identification that solves the potential conflict between the simultaneous persistent excitation of the system and the stabilization of the closed-loop system. Based on the original scheme proposed in González et al. (2014), this manuscript extends those results by taking into account model uncertainties and by exploiting the knowledge of the probability distribution of the excitation signal used to identify the plant. The robust extension solves the main drawback of the previous work, which was limited to a nominal analysis while the need of re-identificationassumes the presence of model uncertainties. In addition, the probabilistic analysis allows the use of smaller target sets computed as Probabilistic Invariant Sets (PIS), improving the system performance during the identification procedure. Simulation results show the practical benefits of the novel robust strategy.
Fil: Anderson, Alejandro Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Ferramosca, Antonio. Universidad Tecnológica Nacional. Facultad Regional Reconquista; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Fil: D'jorge, Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Kofman, Ernesto Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina - Materia
-
Closed-Loop Re-Identification
Model Predictive Control
Probabilistic Invariant Sets - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/83081
Ver los metadatos del registro completo
id |
CONICETDig_9dab5df63c26c6c1fc4570bee51fb601 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/83081 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Robust MPC suitable for closed-loop re-identification, based on probabilistic invariant setsAnderson, Alejandro LuisGonzález, Alejandro HernánFerramosca, AntonioD'jorge, AgustinaKofman, Ernesto JavierClosed-Loop Re-IdentificationModel Predictive ControlProbabilistic Invariant Setshttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2This work extends a recent set-based Model Predictive Control (MPC) scheme for closed loop re-identification that solves the potential conflict between the simultaneous persistent excitation of the system and the stabilization of the closed-loop system. Based on the original scheme proposed in González et al. (2014), this manuscript extends those results by taking into account model uncertainties and by exploiting the knowledge of the probability distribution of the excitation signal used to identify the plant. The robust extension solves the main drawback of the previous work, which was limited to a nominal analysis while the need of re-identificationassumes the presence of model uncertainties. In addition, the probabilistic analysis allows the use of smaller target sets computed as Probabilistic Invariant Sets (PIS), improving the system performance during the identification procedure. Simulation results show the practical benefits of the novel robust strategy.Fil: Anderson, Alejandro Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Ferramosca, Antonio. Universidad Tecnológica Nacional. Facultad Regional Reconquista; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: D'jorge, Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Kofman, Ernesto Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaElsevier Science2018-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/83081Anderson, Alejandro Luis; González, Alejandro Hernán; Ferramosca, Antonio; D'jorge, Agustina; Kofman, Ernesto Javier; Robust MPC suitable for closed-loop re-identification, based on probabilistic invariant sets; Elsevier Science; Systems And Control Letters; 118; 8-2018; 84-930167-6911CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.sysconle.2018.06.002info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167691118301099info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:49Zoai:ri.conicet.gov.ar:11336/83081instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:49.379CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Robust MPC suitable for closed-loop re-identification, based on probabilistic invariant sets |
title |
Robust MPC suitable for closed-loop re-identification, based on probabilistic invariant sets |
spellingShingle |
Robust MPC suitable for closed-loop re-identification, based on probabilistic invariant sets Anderson, Alejandro Luis Closed-Loop Re-Identification Model Predictive Control Probabilistic Invariant Sets |
title_short |
Robust MPC suitable for closed-loop re-identification, based on probabilistic invariant sets |
title_full |
Robust MPC suitable for closed-loop re-identification, based on probabilistic invariant sets |
title_fullStr |
Robust MPC suitable for closed-loop re-identification, based on probabilistic invariant sets |
title_full_unstemmed |
Robust MPC suitable for closed-loop re-identification, based on probabilistic invariant sets |
title_sort |
Robust MPC suitable for closed-loop re-identification, based on probabilistic invariant sets |
dc.creator.none.fl_str_mv |
Anderson, Alejandro Luis González, Alejandro Hernán Ferramosca, Antonio D'jorge, Agustina Kofman, Ernesto Javier |
author |
Anderson, Alejandro Luis |
author_facet |
Anderson, Alejandro Luis González, Alejandro Hernán Ferramosca, Antonio D'jorge, Agustina Kofman, Ernesto Javier |
author_role |
author |
author2 |
González, Alejandro Hernán Ferramosca, Antonio D'jorge, Agustina Kofman, Ernesto Javier |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Closed-Loop Re-Identification Model Predictive Control Probabilistic Invariant Sets |
topic |
Closed-Loop Re-Identification Model Predictive Control Probabilistic Invariant Sets |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This work extends a recent set-based Model Predictive Control (MPC) scheme for closed loop re-identification that solves the potential conflict between the simultaneous persistent excitation of the system and the stabilization of the closed-loop system. Based on the original scheme proposed in González et al. (2014), this manuscript extends those results by taking into account model uncertainties and by exploiting the knowledge of the probability distribution of the excitation signal used to identify the plant. The robust extension solves the main drawback of the previous work, which was limited to a nominal analysis while the need of re-identificationassumes the presence of model uncertainties. In addition, the probabilistic analysis allows the use of smaller target sets computed as Probabilistic Invariant Sets (PIS), improving the system performance during the identification procedure. Simulation results show the practical benefits of the novel robust strategy. Fil: Anderson, Alejandro Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Ferramosca, Antonio. Universidad Tecnológica Nacional. Facultad Regional Reconquista; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina Fil: D'jorge, Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Kofman, Ernesto Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina |
description |
This work extends a recent set-based Model Predictive Control (MPC) scheme for closed loop re-identification that solves the potential conflict between the simultaneous persistent excitation of the system and the stabilization of the closed-loop system. Based on the original scheme proposed in González et al. (2014), this manuscript extends those results by taking into account model uncertainties and by exploiting the knowledge of the probability distribution of the excitation signal used to identify the plant. The robust extension solves the main drawback of the previous work, which was limited to a nominal analysis while the need of re-identificationassumes the presence of model uncertainties. In addition, the probabilistic analysis allows the use of smaller target sets computed as Probabilistic Invariant Sets (PIS), improving the system performance during the identification procedure. Simulation results show the practical benefits of the novel robust strategy. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/83081 Anderson, Alejandro Luis; González, Alejandro Hernán; Ferramosca, Antonio; D'jorge, Agustina; Kofman, Ernesto Javier; Robust MPC suitable for closed-loop re-identification, based on probabilistic invariant sets; Elsevier Science; Systems And Control Letters; 118; 8-2018; 84-93 0167-6911 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/83081 |
identifier_str_mv |
Anderson, Alejandro Luis; González, Alejandro Hernán; Ferramosca, Antonio; D'jorge, Agustina; Kofman, Ernesto Javier; Robust MPC suitable for closed-loop re-identification, based on probabilistic invariant sets; Elsevier Science; Systems And Control Letters; 118; 8-2018; 84-93 0167-6911 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.sysconle.2018.06.002 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167691118301099 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269930005725184 |
score |
13.13397 |