Characterization and computation of control invariant sets within target regionsfor linear impulsive control systems

Autores
Sánchez, Ignacio Julián Rodolfo; Louembet, Christophe; Actis, Marcelo Jesús; González, Alejandro Hernán
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Linear impulsively controlled systems are suitable to describe a venue of real-life problems, going from disease treatment to aerospace guidance. The main characteristic of such systems is that they remain uncontrolled for certain periods of time. As a consequence, punctual equilibria characterizations outside the origin are no longer useful, and the whole concept of equilibrium and its natural extension, the controlled invariant sets, needs to be redefined. Also, an exact characterization of the admissible states, i.e., states such that their uncontrolled evolution between impulse times remain within a predefined set, is required. An approach to such tasks -- based on the Markov-Lukasz theorem -- is presented, providing a tractable and non-conservative characterization, emerging from polynomial positivity that has application to systems with rational eigenvalues. This is in turn the basis for obtaining a tractable approximation to the maximal admissible invariant sets. In this work, it is also demonstrated that, in order for the problem to have a solution, an invariant set (and moreover, an equilibrium set) must be contained within the target zone. To assess the proposal, the so-obtained impulsive invariant set is explicitly used in the formulation of a set-based model predictive controller, with application to zone tracking. In this context, specific MPC theory needs to be considered, as the target is not necessarily stable in the sense of Lyapunov. A zone MPC formulation is proposed, which is able to i) track an invariant set such that the uncontrolled propagation fulfills the zone constraint at all times and ii) converge asymptotically to the set of periodic orbits completely contained within the target zone.
Fil: Sánchez, Ignacio Julián Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Louembet, Christophe. Centre National de la Recherche Scientifique; Francia. Universite de Toulose - Le Mirail; Francia
Fil: Actis, Marcelo Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina
Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Materia
IMPULSIVELY CONTROLLED SYSTEMS
INVARIANT SETS
ADMISSIBLE SETS
MODEL PREDICTIVE CONTROL
POLYNOMIAL POSITIVITY
SEMIDEFINITE PROGRAMMING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/167383

id CONICETDig_4ca37cde9b12cfe27ae72d5d966b9fa0
oai_identifier_str oai:ri.conicet.gov.ar:11336/167383
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Characterization and computation of control invariant sets within target regionsfor linear impulsive control systemsSánchez, Ignacio Julián RodolfoLouembet, ChristopheActis, Marcelo JesúsGonzález, Alejandro HernánIMPULSIVELY CONTROLLED SYSTEMSINVARIANT SETSADMISSIBLE SETSMODEL PREDICTIVE CONTROLPOLYNOMIAL POSITIVITYSEMIDEFINITE PROGRAMMINGhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Linear impulsively controlled systems are suitable to describe a venue of real-life problems, going from disease treatment to aerospace guidance. The main characteristic of such systems is that they remain uncontrolled for certain periods of time. As a consequence, punctual equilibria characterizations outside the origin are no longer useful, and the whole concept of equilibrium and its natural extension, the controlled invariant sets, needs to be redefined. Also, an exact characterization of the admissible states, i.e., states such that their uncontrolled evolution between impulse times remain within a predefined set, is required. An approach to such tasks -- based on the Markov-Lukasz theorem -- is presented, providing a tractable and non-conservative characterization, emerging from polynomial positivity that has application to systems with rational eigenvalues. This is in turn the basis for obtaining a tractable approximation to the maximal admissible invariant sets. In this work, it is also demonstrated that, in order for the problem to have a solution, an invariant set (and moreover, an equilibrium set) must be contained within the target zone. To assess the proposal, the so-obtained impulsive invariant set is explicitly used in the formulation of a set-based model predictive controller, with application to zone tracking. In this context, specific MPC theory needs to be considered, as the target is not necessarily stable in the sense of Lyapunov. A zone MPC formulation is proposed, which is able to i) track an invariant set such that the uncontrolled propagation fulfills the zone constraint at all times and ii) converge asymptotically to the set of periodic orbits completely contained within the target zone.Fil: Sánchez, Ignacio Julián Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Louembet, Christophe. Centre National de la Recherche Scientifique; Francia. Universite de Toulose - Le Mirail; FranciaFil: Actis, Marcelo Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; ArgentinaFil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaCornell University2021-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/167383Sánchez, Ignacio Julián Rodolfo; Louembet, Christophe; Actis, Marcelo Jesús; González, Alejandro Hernán; Characterization and computation of control invariant sets within target regionsfor linear impulsive control systems; Cornell University; ArXiv.org; 3-2021; 1-162331-8422CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2103.13831info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.2103.13831info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:10:19Zoai:ri.conicet.gov.ar:11336/167383instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:10:19.914CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Characterization and computation of control invariant sets within target regionsfor linear impulsive control systems
title Characterization and computation of control invariant sets within target regionsfor linear impulsive control systems
spellingShingle Characterization and computation of control invariant sets within target regionsfor linear impulsive control systems
Sánchez, Ignacio Julián Rodolfo
IMPULSIVELY CONTROLLED SYSTEMS
INVARIANT SETS
ADMISSIBLE SETS
MODEL PREDICTIVE CONTROL
POLYNOMIAL POSITIVITY
SEMIDEFINITE PROGRAMMING
title_short Characterization and computation of control invariant sets within target regionsfor linear impulsive control systems
title_full Characterization and computation of control invariant sets within target regionsfor linear impulsive control systems
title_fullStr Characterization and computation of control invariant sets within target regionsfor linear impulsive control systems
title_full_unstemmed Characterization and computation of control invariant sets within target regionsfor linear impulsive control systems
title_sort Characterization and computation of control invariant sets within target regionsfor linear impulsive control systems
dc.creator.none.fl_str_mv Sánchez, Ignacio Julián Rodolfo
Louembet, Christophe
Actis, Marcelo Jesús
González, Alejandro Hernán
author Sánchez, Ignacio Julián Rodolfo
author_facet Sánchez, Ignacio Julián Rodolfo
Louembet, Christophe
Actis, Marcelo Jesús
González, Alejandro Hernán
author_role author
author2 Louembet, Christophe
Actis, Marcelo Jesús
González, Alejandro Hernán
author2_role author
author
author
dc.subject.none.fl_str_mv IMPULSIVELY CONTROLLED SYSTEMS
INVARIANT SETS
ADMISSIBLE SETS
MODEL PREDICTIVE CONTROL
POLYNOMIAL POSITIVITY
SEMIDEFINITE PROGRAMMING
topic IMPULSIVELY CONTROLLED SYSTEMS
INVARIANT SETS
ADMISSIBLE SETS
MODEL PREDICTIVE CONTROL
POLYNOMIAL POSITIVITY
SEMIDEFINITE PROGRAMMING
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Linear impulsively controlled systems are suitable to describe a venue of real-life problems, going from disease treatment to aerospace guidance. The main characteristic of such systems is that they remain uncontrolled for certain periods of time. As a consequence, punctual equilibria characterizations outside the origin are no longer useful, and the whole concept of equilibrium and its natural extension, the controlled invariant sets, needs to be redefined. Also, an exact characterization of the admissible states, i.e., states such that their uncontrolled evolution between impulse times remain within a predefined set, is required. An approach to such tasks -- based on the Markov-Lukasz theorem -- is presented, providing a tractable and non-conservative characterization, emerging from polynomial positivity that has application to systems with rational eigenvalues. This is in turn the basis for obtaining a tractable approximation to the maximal admissible invariant sets. In this work, it is also demonstrated that, in order for the problem to have a solution, an invariant set (and moreover, an equilibrium set) must be contained within the target zone. To assess the proposal, the so-obtained impulsive invariant set is explicitly used in the formulation of a set-based model predictive controller, with application to zone tracking. In this context, specific MPC theory needs to be considered, as the target is not necessarily stable in the sense of Lyapunov. A zone MPC formulation is proposed, which is able to i) track an invariant set such that the uncontrolled propagation fulfills the zone constraint at all times and ii) converge asymptotically to the set of periodic orbits completely contained within the target zone.
Fil: Sánchez, Ignacio Julián Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Louembet, Christophe. Centre National de la Recherche Scientifique; Francia. Universite de Toulose - Le Mirail; Francia
Fil: Actis, Marcelo Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina
Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
description Linear impulsively controlled systems are suitable to describe a venue of real-life problems, going from disease treatment to aerospace guidance. The main characteristic of such systems is that they remain uncontrolled for certain periods of time. As a consequence, punctual equilibria characterizations outside the origin are no longer useful, and the whole concept of equilibrium and its natural extension, the controlled invariant sets, needs to be redefined. Also, an exact characterization of the admissible states, i.e., states such that their uncontrolled evolution between impulse times remain within a predefined set, is required. An approach to such tasks -- based on the Markov-Lukasz theorem -- is presented, providing a tractable and non-conservative characterization, emerging from polynomial positivity that has application to systems with rational eigenvalues. This is in turn the basis for obtaining a tractable approximation to the maximal admissible invariant sets. In this work, it is also demonstrated that, in order for the problem to have a solution, an invariant set (and moreover, an equilibrium set) must be contained within the target zone. To assess the proposal, the so-obtained impulsive invariant set is explicitly used in the formulation of a set-based model predictive controller, with application to zone tracking. In this context, specific MPC theory needs to be considered, as the target is not necessarily stable in the sense of Lyapunov. A zone MPC formulation is proposed, which is able to i) track an invariant set such that the uncontrolled propagation fulfills the zone constraint at all times and ii) converge asymptotically to the set of periodic orbits completely contained within the target zone.
publishDate 2021
dc.date.none.fl_str_mv 2021-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/167383
Sánchez, Ignacio Julián Rodolfo; Louembet, Christophe; Actis, Marcelo Jesús; González, Alejandro Hernán; Characterization and computation of control invariant sets within target regionsfor linear impulsive control systems; Cornell University; ArXiv.org; 3-2021; 1-16
2331-8422
CONICET Digital
CONICET
url http://hdl.handle.net/11336/167383
identifier_str_mv Sánchez, Ignacio Julián Rodolfo; Louembet, Christophe; Actis, Marcelo Jesús; González, Alejandro Hernán; Characterization and computation of control invariant sets within target regionsfor linear impulsive control systems; Cornell University; ArXiv.org; 3-2021; 1-16
2331-8422
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2103.13831
info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.2103.13831
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Cornell University
publisher.none.fl_str_mv Cornell University
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270114478555136
score 13.13397