Characterization and computation of control invariant sets within target regionsfor linear impulsive control systems
- Autores
- Sánchez, Ignacio Julián Rodolfo; Louembet, Christophe; Actis, Marcelo Jesús; González, Alejandro Hernán
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Linear impulsively controlled systems are suitable to describe a venue of real-life problems, going from disease treatment to aerospace guidance. The main characteristic of such systems is that they remain uncontrolled for certain periods of time. As a consequence, punctual equilibria characterizations outside the origin are no longer useful, and the whole concept of equilibrium and its natural extension, the controlled invariant sets, needs to be redefined. Also, an exact characterization of the admissible states, i.e., states such that their uncontrolled evolution between impulse times remain within a predefined set, is required. An approach to such tasks -- based on the Markov-Lukasz theorem -- is presented, providing a tractable and non-conservative characterization, emerging from polynomial positivity that has application to systems with rational eigenvalues. This is in turn the basis for obtaining a tractable approximation to the maximal admissible invariant sets. In this work, it is also demonstrated that, in order for the problem to have a solution, an invariant set (and moreover, an equilibrium set) must be contained within the target zone. To assess the proposal, the so-obtained impulsive invariant set is explicitly used in the formulation of a set-based model predictive controller, with application to zone tracking. In this context, specific MPC theory needs to be considered, as the target is not necessarily stable in the sense of Lyapunov. A zone MPC formulation is proposed, which is able to i) track an invariant set such that the uncontrolled propagation fulfills the zone constraint at all times and ii) converge asymptotically to the set of periodic orbits completely contained within the target zone.
Fil: Sánchez, Ignacio Julián Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Louembet, Christophe. Centre National de la Recherche Scientifique; Francia. Universite de Toulose - Le Mirail; Francia
Fil: Actis, Marcelo Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina
Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina - Materia
-
IMPULSIVELY CONTROLLED SYSTEMS
INVARIANT SETS
ADMISSIBLE SETS
MODEL PREDICTIVE CONTROL
POLYNOMIAL POSITIVITY
SEMIDEFINITE PROGRAMMING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/167383
Ver los metadatos del registro completo
id |
CONICETDig_4ca37cde9b12cfe27ae72d5d966b9fa0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/167383 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Characterization and computation of control invariant sets within target regionsfor linear impulsive control systemsSánchez, Ignacio Julián RodolfoLouembet, ChristopheActis, Marcelo JesúsGonzález, Alejandro HernánIMPULSIVELY CONTROLLED SYSTEMSINVARIANT SETSADMISSIBLE SETSMODEL PREDICTIVE CONTROLPOLYNOMIAL POSITIVITYSEMIDEFINITE PROGRAMMINGhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Linear impulsively controlled systems are suitable to describe a venue of real-life problems, going from disease treatment to aerospace guidance. The main characteristic of such systems is that they remain uncontrolled for certain periods of time. As a consequence, punctual equilibria characterizations outside the origin are no longer useful, and the whole concept of equilibrium and its natural extension, the controlled invariant sets, needs to be redefined. Also, an exact characterization of the admissible states, i.e., states such that their uncontrolled evolution between impulse times remain within a predefined set, is required. An approach to such tasks -- based on the Markov-Lukasz theorem -- is presented, providing a tractable and non-conservative characterization, emerging from polynomial positivity that has application to systems with rational eigenvalues. This is in turn the basis for obtaining a tractable approximation to the maximal admissible invariant sets. In this work, it is also demonstrated that, in order for the problem to have a solution, an invariant set (and moreover, an equilibrium set) must be contained within the target zone. To assess the proposal, the so-obtained impulsive invariant set is explicitly used in the formulation of a set-based model predictive controller, with application to zone tracking. In this context, specific MPC theory needs to be considered, as the target is not necessarily stable in the sense of Lyapunov. A zone MPC formulation is proposed, which is able to i) track an invariant set such that the uncontrolled propagation fulfills the zone constraint at all times and ii) converge asymptotically to the set of periodic orbits completely contained within the target zone.Fil: Sánchez, Ignacio Julián Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Louembet, Christophe. Centre National de la Recherche Scientifique; Francia. Universite de Toulose - Le Mirail; FranciaFil: Actis, Marcelo Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; ArgentinaFil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaCornell University2021-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/167383Sánchez, Ignacio Julián Rodolfo; Louembet, Christophe; Actis, Marcelo Jesús; González, Alejandro Hernán; Characterization and computation of control invariant sets within target regionsfor linear impulsive control systems; Cornell University; ArXiv.org; 3-2021; 1-162331-8422CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2103.13831info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.2103.13831info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:10:19Zoai:ri.conicet.gov.ar:11336/167383instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:10:19.914CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Characterization and computation of control invariant sets within target regionsfor linear impulsive control systems |
title |
Characterization and computation of control invariant sets within target regionsfor linear impulsive control systems |
spellingShingle |
Characterization and computation of control invariant sets within target regionsfor linear impulsive control systems Sánchez, Ignacio Julián Rodolfo IMPULSIVELY CONTROLLED SYSTEMS INVARIANT SETS ADMISSIBLE SETS MODEL PREDICTIVE CONTROL POLYNOMIAL POSITIVITY SEMIDEFINITE PROGRAMMING |
title_short |
Characterization and computation of control invariant sets within target regionsfor linear impulsive control systems |
title_full |
Characterization and computation of control invariant sets within target regionsfor linear impulsive control systems |
title_fullStr |
Characterization and computation of control invariant sets within target regionsfor linear impulsive control systems |
title_full_unstemmed |
Characterization and computation of control invariant sets within target regionsfor linear impulsive control systems |
title_sort |
Characterization and computation of control invariant sets within target regionsfor linear impulsive control systems |
dc.creator.none.fl_str_mv |
Sánchez, Ignacio Julián Rodolfo Louembet, Christophe Actis, Marcelo Jesús González, Alejandro Hernán |
author |
Sánchez, Ignacio Julián Rodolfo |
author_facet |
Sánchez, Ignacio Julián Rodolfo Louembet, Christophe Actis, Marcelo Jesús González, Alejandro Hernán |
author_role |
author |
author2 |
Louembet, Christophe Actis, Marcelo Jesús González, Alejandro Hernán |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
IMPULSIVELY CONTROLLED SYSTEMS INVARIANT SETS ADMISSIBLE SETS MODEL PREDICTIVE CONTROL POLYNOMIAL POSITIVITY SEMIDEFINITE PROGRAMMING |
topic |
IMPULSIVELY CONTROLLED SYSTEMS INVARIANT SETS ADMISSIBLE SETS MODEL PREDICTIVE CONTROL POLYNOMIAL POSITIVITY SEMIDEFINITE PROGRAMMING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Linear impulsively controlled systems are suitable to describe a venue of real-life problems, going from disease treatment to aerospace guidance. The main characteristic of such systems is that they remain uncontrolled for certain periods of time. As a consequence, punctual equilibria characterizations outside the origin are no longer useful, and the whole concept of equilibrium and its natural extension, the controlled invariant sets, needs to be redefined. Also, an exact characterization of the admissible states, i.e., states such that their uncontrolled evolution between impulse times remain within a predefined set, is required. An approach to such tasks -- based on the Markov-Lukasz theorem -- is presented, providing a tractable and non-conservative characterization, emerging from polynomial positivity that has application to systems with rational eigenvalues. This is in turn the basis for obtaining a tractable approximation to the maximal admissible invariant sets. In this work, it is also demonstrated that, in order for the problem to have a solution, an invariant set (and moreover, an equilibrium set) must be contained within the target zone. To assess the proposal, the so-obtained impulsive invariant set is explicitly used in the formulation of a set-based model predictive controller, with application to zone tracking. In this context, specific MPC theory needs to be considered, as the target is not necessarily stable in the sense of Lyapunov. A zone MPC formulation is proposed, which is able to i) track an invariant set such that the uncontrolled propagation fulfills the zone constraint at all times and ii) converge asymptotically to the set of periodic orbits completely contained within the target zone. Fil: Sánchez, Ignacio Julián Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Louembet, Christophe. Centre National de la Recherche Scientifique; Francia. Universite de Toulose - Le Mirail; Francia Fil: Actis, Marcelo Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina |
description |
Linear impulsively controlled systems are suitable to describe a venue of real-life problems, going from disease treatment to aerospace guidance. The main characteristic of such systems is that they remain uncontrolled for certain periods of time. As a consequence, punctual equilibria characterizations outside the origin are no longer useful, and the whole concept of equilibrium and its natural extension, the controlled invariant sets, needs to be redefined. Also, an exact characterization of the admissible states, i.e., states such that their uncontrolled evolution between impulse times remain within a predefined set, is required. An approach to such tasks -- based on the Markov-Lukasz theorem -- is presented, providing a tractable and non-conservative characterization, emerging from polynomial positivity that has application to systems with rational eigenvalues. This is in turn the basis for obtaining a tractable approximation to the maximal admissible invariant sets. In this work, it is also demonstrated that, in order for the problem to have a solution, an invariant set (and moreover, an equilibrium set) must be contained within the target zone. To assess the proposal, the so-obtained impulsive invariant set is explicitly used in the formulation of a set-based model predictive controller, with application to zone tracking. In this context, specific MPC theory needs to be considered, as the target is not necessarily stable in the sense of Lyapunov. A zone MPC formulation is proposed, which is able to i) track an invariant set such that the uncontrolled propagation fulfills the zone constraint at all times and ii) converge asymptotically to the set of periodic orbits completely contained within the target zone. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/167383 Sánchez, Ignacio Julián Rodolfo; Louembet, Christophe; Actis, Marcelo Jesús; González, Alejandro Hernán; Characterization and computation of control invariant sets within target regionsfor linear impulsive control systems; Cornell University; ArXiv.org; 3-2021; 1-16 2331-8422 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/167383 |
identifier_str_mv |
Sánchez, Ignacio Julián Rodolfo; Louembet, Christophe; Actis, Marcelo Jesús; González, Alejandro Hernán; Characterization and computation of control invariant sets within target regionsfor linear impulsive control systems; Cornell University; ArXiv.org; 3-2021; 1-16 2331-8422 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2103.13831 info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.2103.13831 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Cornell University |
publisher.none.fl_str_mv |
Cornell University |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270114478555136 |
score |
13.13397 |